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Part I.—The Equations of Motion

T
.rl'-

: Sunmary. o
! :c An integrated analytical treatment is presented which deals with the equilibrium and stability of the flexible :\"
acroplane in flight. The analysis embodies those methods currently employed to investigate the behaviour of ~
.: the flexible acroplane stemming on the one hand from the stability theory of the rigid aeroplane and on the ;r:::
{ other from conventional aeroelastic studies. The integrated treatment serves to clarify the regions of application g‘..g
3 of these restricted methods. et
- In Part I the equations of motion for a flexible acroplane are developed in as general a manner as possible. ::»:‘
:'_,‘ In Part II the general analysis is applied to a detailed study of the equilibrium and stability of the slender, .:
'}: integrated aeroplane configuration. ;:s_
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1. Introduction.

'f‘ -.

PRI AR
W Tale et

= The effect of flexibility on the stability and control of aeroplanes is recognised as being of o
N paramount importance. Yet this problem tends to be treated either as a modification of rigid-aeroplane ,.;.
stability theory or as an extension of the methods common to flutter analysis. In the first case the ki

= rigid-aeroplane equations of motion are modified by the use of so-called ‘modified derivatives’ :‘%
3*'.? ' which include an allowance only for the steady or equilibrinm deformation of the acroplane structure. E_::
.;‘_:3 The flutter equations are extended to include small translation and rotation of the azroplanc as a \-:::
. N , whole about a zero position: but the zero position can not, with the modification adopted, be a true Feuty :f:f-
’j . equilibrium state for the acroplanc in flight. Both thesc approaches are, to some extent, deficient in -y et p o2
i .' dealing with the general problem of the stability and control of the flexible acroplane. K _J H
o The advent of the slender, integrated acroplanc configuration which is currently thought to be 44 , :::::

_:-‘,1 suitable for a supersonic transport demands the development of an analysis dealing with the 140 \}'*
:",;‘ dynamics of the deformable aeroplann in as fundamental a manner as posslbl(. Part I of this paper :','.:-
;.-(:4[ - —_— - - - - - - - - - ————— e ) .
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h an analysis in general terms: it is natural that the choice of an axis system for an
f flight should be, in a generalised sense, body axes and a central consideration of the
e definition of body axes for a deformable acroplane. Part I applies the general analysis
igation of the trim states and the stability of thesc trim states for the slender, integrated
bnfiguration. This type of acroplane configuration is very different from the classical
ustrates well the extent to which overall aeroplane stability is inseparable from acroplane

’

guations of Motion.
e Equations of Motion of a Deformable Body tn the Absence of Kinematic Constraints.

1.1. Introduction.—The equations of motion are to be set up for a body which possesses,
o an overall spatial motion, a local deformation motion due to its inherent flexibility, the
hole being subjected to gravitational (body) forces and such external forces as are caused
he relative motion of the body surface through a fluid medium. In particular, the body
kternal kinematic constraints.

fned in all that follows that the relative displacement of any point of the body from the
bccupies in some assigned reference configuration is small in comparison with a typical
ar dimension of the body: thus second and higher powers of the displacement are
Ihis assumption is that usually made in the Classical Theory of Elasticity: it implies
ain at any point is small and, in addition, that the relative rotation of any element is
consequence of thesc restrictions a set of linear relations connects the strain and
t components at a point. It is not necessarily assumed that the relation between stress and

L I

e 4 -

near one.
of kinematic boundary conditions means that the Elastic Boundary Value Problem is the
froblem!?, any solution of which is arbitrary to the extent of asmall rigid-body displacement
. The resolution of this arbitrariness will be discussed at length in connection with the
fference axes moving in a generalised sense with the body. However, it may be emphasised
it that the arbitrary nature of the Neumann Solution is quite inadequate to describe the
ion of the body because of its necessary smallness: indeed, any interpretation in this
bntially misleading. '

ations of motion must be referred to inertial or space axes and for the purpose aof
ability and control the motion of the earth may be neglected and ‘carth’ axes adopted.
s in the case of the motion of rigid bodies it is advantagcous to interpose a set of axes
h'the body and in a conventional sense the motion is then referred to body axes. In the
eformable body the specification of such an axis system is not obvious or indeed unique;
fon of this question is postponed for reasons which will become clear.

higly we shall refer to body axes (origin O) whose position and orientation are not specified
p far as they lie always in the region of a set of axes positioned at a definite point and along
ections in the body in a reference configuration,

cification of this reference configuration is not unique but, once chosen, it remaing
. It may coincide, for example, with a particular equilibrium configuration of the bady
haturally it will be taken to coincide with the body configuration when completely free
fnal or body forces. In the latter ense it is then essentinlly an idealised assembly of material
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Let the position vector of a general point of the body be r: let the position vector of the same point
in the reference configuration be r, then a displacement vector ¢ is defined by

r=r—1, 2.1, 1)
where, in accordance with the condition of smallness of the displacement,
2 <€ P

2.1.2. The linear and angular momenta.—Let o be the mass per unit volume at any point
and dV an element of volume. The linear momentum of the body is

ET

Iy

ir

M = Jr o v+ o) v 2.1,2)

'f"T'
Y, et
, .

£ C
]

where v is the velocity of the origin of the body axes relative to inertial axes and d;dt represents time
rate of change with respect to inertial axes.

The corresponding angular momentum about the origin of the body axes is

[ dry .
H=frarx(v+-d~t)dl. 2.1,3)

Let the angular velocity of the body axcs at avy instant be & and Jet the operator d/dt represent
time rate of change with respect to an observer stationed in the body axes; then the operators

d (0
L {& + & x }
are commutable.

The linear momentum {equation (2.1, 2)} may be written 2]

or

M = Mv + MR x 10+ @ x f or'dV + f 0 o dV 21,4 c
V 1 4

)
where

M= f odV
,/

.,

2
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is the mass of the body and

1 .
Ty, = }!_l—fy or,dV

)
.

.

Ll

h\' -

o

is the positic1 vector of the centre of mass of the reference configuration. 2;::{
The angular momentum {equation (2.1, 3)} may be written ro

r -i

H = Mry, x v+ ($y+P') 2 + &

+J or'dV x v +f oty X % av 2.1, 5)
¥ V
“where

P, = f G [rl — ror,]dV
V

is the inertia tensor (or dyadic) for the reference configuration and

.
LN

P = f o[2ry - vl — (r'rg+ror")]dV o
v .

3 .

represents (to first order in r') the addition to P, due to the relative deformation.
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2.1.3. Overall and elemental equations of motion.—'I'he equations of motion for the body
take the form of two equations which relate the overall force and moment on the body to its motion
and in which the internal reactions do not cxplicitly appear and an cquation which embodics the
conditions of equilibrium for the elements of the body.

' Thus if F is the resultant force and L the resultant moment about the origin of the body axes of
- the external (surface) tractions and g is the acceleration due to gravity then
P dM
. —— = F + Mg, (2.1, 6)
= ;
o dH ; > -
3 S =L-vxMy+ 111r0,,+J'_ordl x g 2.1,7)
;:',’\ are the overall equations of motion.
. The equation of motion for an element of the body is
Ll d(  d
r
~ —_ — | = =V- .
! O{dt (V+ dt) g} vz, (2.1,8)
N3 . : , e
S within V, where Z is the stress tensor. On the surface of the body the statical boundary condition is
- that the surface stress components must be equivalent to the external surface traction «; thus on
g
¥ the body surface S,
~ nX=4¢ (2.1,9)

)
»
%

A IS v DE S A A

r "

where n is the outward normal. The overall equations of motion (2.1, 6) and (2.1, 7) may be
considered as necessary conditions for the consistency of equation (2.1, 8) and the statical boundary
condition (2.1, 9).

-

1y

.

2.1.4. Specification of the body axes.—The detailed specification of the body axes may now
profitably be discussed. Let t’; be a solution of equation (2.1, 8) satisfying (2.1, 9) then

a . (¥ 7 P L
2y 'y

N

,.‘" r'y=AR + A8 x 1y + 1’y
\ where AR(?), A8(2) = 0(r") is also a solution where the rotation may be represented as a vector A6 by
3: virtue of its smallness.
(= Let 4, be an axis system set up in the reference contiguration by choosing some (material) point
:::-: as origin and a line of (material) points as an axis of orientation. Then if motion ensues at time #, the
_‘::f specification of the body axes (of a similar nature to the original) may formally be said to be specified
- by a knowledge of AR and A8 at any subsequent time ¢ For it must be noted that the origin of the
’ body axes will no longer necessarily be invested in a material point of the body nor wiil the axis of
: f}.; orientation contain the initial material points. It need only be demonstrated that AR and A8 may be
o in consistently specified in terms of a solution of (2.1, 8): in practice a knowledge of AR and A8 is
:: not required directly as will be seen in the sequel.
oy Any number of ways of choosing the body axes exist but in practice three particular choices
.,‘ would seem to be worthy of discussion.
;‘_f (@) Attached Axes.
el These axes are specified by the simple conditions that
i AR =A@ = 0.
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In this case the origin of the body axes remains invested in one material point of the body while ':{-":
an axis of vrientation is tangent to the curve formed by the material points originally defining the ‘:'_j:.
13 . » . . - . . '. <+
axis of orientation. For ' umple, in the case of Cartesian Axes the axis directions may be the tangent, e
normal and binormal to a curve of material points. Further, any sct of axes which have a fixed "-:";
orientation to such a set of axes, are also Attached axes. t,- 2
(b) Mean Axes.>3 f‘:

. . . N

These axes are chosen in such a way that, at every instant, the linear and angular momenta of the RGNS

- . . . . r l'.d'l.‘
relative motion with respect to the body axes are identically zero. Thus, AN
or’ or'y o

o——=dV = | oryx ——=dV =0 g

Vv 8t i at ..“'-

o o
f o{AR + A8 x 1, + '} dV = const.| 3

1 4 l={o :J'.:u'

f oty X {AR + A8 x ry + r'i}dV = const.| DS

i =1y -*‘-:\.;

where, for coincidence of the body axes and reference axis system .4, at time #, the constants should A
be taken to be zero. The latter equations are sufficient to determine AR, A8, thus, :&-:
oy

MAR + A8 x Mr,, = f or'\dV (2.1, 10a) f.!

vV 1\"7‘}

pat

300

Mry, x AR + A8 - @, = f ory X t'ydV. (2.1, 10b) e

Ir' I:.-t..

0

In practice the specification that the deformation motion shall satisfy the conditions ,,,,.f
ik

’ ."-"'.

f or'dV = 0 2.1, 11a) e

Vv ._‘.."

NN

f oty x £'dV = 0 2.1, 11b) e

3 3 3 H 1 : e
is equivalent to reference of the motion to Mean Axes. Then equations (2.1, 4) and (2.1, 5) respectively - -

» #

take the forms

I T TR )

3
¥

M = Mv + MQ x 1y,

I, '."'o '
AP
. e

H=Mry, x v+ (P+P)- Q.

N,
The use of Mean Axes effectively reduces the inertial coupling between the overall and relative :'_t.:‘{:
deformation motions. N
It may be noted that if the origin of the reference axis system A, is chosen to be the centre of .:-'_1::-
mass of the reference configuration then because of condition (2.1, 11a) the origin is always at the :;,::-.
centre of mass. k7
(¢) Principal Axes. -
The basic requirement in this case is that the tensor @ should be diagonal and this is most ::.:

A

conveniently coupled with the condition (2.1, 11a) which ensures that 1’ is zero. The equations
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ot determining AR and A8 are complicated but in the case w hen the origin of the reference axis system i
= 4, is chosen so that 1y, = 0 they simplify to :'_:
MAR = ( or'yav (2.1, 10a) =
¥ !
and the three scalar cquations, :'_
@y k=k- P, i=i-9,-j=0 (2.1, 12) o
o
where i, j, k are three orthogonal unit vectors parallel to the body axes and -~
"
@, = f o [2ry ¥yl = (¥'yr, +1gr'y)] VY >
V .,
B f o [2ry - 1’1 = (' 1o’ )] AV — -
v *
— A8 x f o [ty — £yt5] AV — f o [5s™1 + rora] dV x AG. o
|4 44 f
The three scalar equations (2.1, 12) are sufficient to determine the components of A6, o
. . . N . . . . . . . -
Principal Axes ir. this sense will most often be combined with the choice of Principal Axes in the wi
usual geometric sense situated at the centre of mass for the reference axis system 4. The body axes g
are then always Principal Axes situated at the centre of mass of the deformed body. The conditions -
(2.1, 11b) and (2.1, 12) imposed on ¢’ by the choice respectively of Mean Axes or Principal Axes are i
more clearly illustrated by writing these conditions in terms of Cartesian components. Thus, with ;::-
. . e
Ty = Xol + Y] + 2k, b
v =xi+yj+ 2k o
where, as before, i, j, k are a unit (body) triad, conditions (2.1, 11b) are ;E
A
o
f o (393" = 2y ) AV = f o (202" —x08")dV = f o (%) =y ) dV = 0 (2.1,13) w2
A 14 Vv v S
~ e . . e,
o while conditions (2.1, 12) become Y
e Fe
o e
g | ot +myyav = | ot +ayar - | otay sy <o. (2.1, 14) =
v v v o
RS For shapes which are typical of aeroplanes in which transverse displacement relative to a plane or .‘-'_(-
ey line contributes the main deformation the conditions (2.1, 13) and (2.1, 14) may be identical. For '»:,'
'::-".; example, let the median plane of a plate-like structure be flat in the reference configuration and let a ‘:-f
+ . . . re , L
el Cartesian axis system O, x, y, z be chosen to have the (%, y) plane as the median plane. Then if o
R . . e
g 2'(%%, ¥o) is the transverse displacement component and it is assumed that terms of O (zpn, 20)') are @:
[ much smaller than terms of O (2’xy, & * ) then since the last integral vanishes identically conditions '::-:
::".’ (2.1, 13) and (2.1, 14) arc identical. This latter assumption is effectively the neglect of rotatory inertia. i
-,.‘._4." o
! - . - .
oA 2.1.5. Variational Sform of the elemental equation of notion.—Having discussed the question L
e . . . . . P A
e of the specification and choice of the body axes we may return to further consideration of the '@
':_._d equations of motion, in particular the differential equation (2.1, 8) and boundary condition (2.1, 9). s
iy These may conveniently be combined in a single variational equation of motion. Furthermore, the A
" . e . . . . . o
;.’;..; variational form of the clemental equation of motion is by far the most fertile for the deduction of VIA
Faed approximate representations of the flexibility of the body. ¢
n":\"‘j “ )
.0 6 =
: e
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-::: Let the path of the motion over a fixed, arbitrary time interval £, < ¢ < ¢, be varied from the
‘.i actual path by the virtual displacement dr’, then since the forces on an clement of the body are, at
rf-:" every instant, in equilibrium (o er the actual path) then to a first-order v ariation in the path no work
is perfornied by these forces through the virtual displacement. Thus, integrating over every element —
‘{‘ and over the time interval #; < f < t,, ‘
‘\2:% l ::-
G ff [0 {i{ (v + 513) - g} ~V-E|-sravd = 0. (2.1, 15) i
W ydr dt\ ~ dt J :.::
::‘ Transforming the third term by the Divergence Theorem, using the boundary condition (2.1, 9) f,*
o and noting that e
= B:Vor = B:L(Vor'+0r'V) = X: 5% -~
’.;i -
S where ¥ is the strain tensor then, finally, the variational equation of motion is o
<) "
2 ‘ . ]
> f’z{f [a{f(w‘i")—g}-Sr'+z:8\P]dV—J q,-sr'ds}dz=o. 2.1, 16) |
. n v dt dt s :':_:
The variation 8’ is arbitrary except that it must satisfy the same (quasi-kinematic) conditions as ':::‘»
are satisfied by r’ consequent upon the choice of a particular type of body axes. Thus, in particular, o
the variational modes or’ = const. and 8r’ = const. x r, are not admissible under any choice of e
body axes so thit equation (2.1, 16) does not contain equations (2.1, 6) and (2.1, 7) as special cases. E:
{ﬁs Similarly equation (2.1, 8) and any differential equation (rclating to some approximate type of :1.1
A analysis) deduced from (2.1, 16) may not have as a solution const.; + const., X rg. :"_,
A To the equations of motion for the acroplane may be added equations representing cuntroi systems N
e incorporating servo-mechanisms. With large controls it may be important to include the inertia of :.::
{ the control and in that case a part of r' may be allotted to control deflection; a part of the surtace 3 |
% loading ¢ will of course be associated with control deflection. These additional equativns of motion :'.::
7 will embody {in place of the variation in strain energy integral of equation (2.1, 16)} the Transfer ;
Oh! Function of the control as related to the demand and to the overall and deformation motions of the I
;"" aeroplane. ._:':
f e
. 2.1.6. Attitude of the body axes in space.—The presence of the gravitational force in the :';:
:~:1‘ equations of motion requires that reference be made to the attitude of the body axes in space since .:'_."
ﬁ this force is fixed in direction relative to ‘carth’ axes. :‘::
_: It is necessary to adopt a scheme whereby a sequence of rotations will, from a refcience attitude, ..‘::
lead uniquely to 2 final attitude: the following scheme! is usually adopted. In the reference position, :t-"':!
R axis 0, 3 of the (inertial) triad 0, 1, 2, 3 is vertically dow nw ard; taking all rotations to be right-handed -
% the final attitude is obtained from the reference by the sequence of rotations ¢4, ¢,, ¢, cach rotatton \
- ’ being about the carried position of the relevant axis. Thus, using the abbreviaticns cos¢; = ¢; ;":ﬁ
o7 - sin¢g; = s, the orthogonal matrix of direction cosines® for the final attitude is f::-“:
A% RN
Coly €453 y = S r"!
P )
:,'::f [ = | —ers3+ 508065, €15 + §508,  §16] (2.5,17) :';.'_‘:
“ W
f 155 + €180, = 10 + 1883, C4Ca t:::'
I ) ‘-‘
X 7 -
. O
= ]
(3 !
3 i
; -f,
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Then if the column [t} represents the components of a vector v in the fixed (vertical) ats system

and {v;,,} its components in the moving (body) axis system, :::'

eyl = - 2.1, 18 Su

Lo} = - (2.1, 18) i.

A kinematic relation is also required between the components of & referred to the body ases,

say (p, ¢ ), and the ¢; and their time rates of change, é;. The required relation is :_-_”_

o

Pl 1 0 -] .::’

hah

q{ =10 o sie| | (2.1,19) Z..-r

r 0 —s o6l

2.2. The Deviant Equations of Motion. '[-‘;

2.2.1. Introduction.--A consideration of the bchaviour of an acroplane in flight will deal Py

essertially with three distinct problems: : ‘\;"

(1) equilibrium of a steady-flight state, ’ :;

(2) the stability of such steady-flight states, O

(3) the response of the acroplane to controls or gusts and behaviour in unsteady manocuvres 5’«

(rapidly rolling flight, rapid pull-outs, etc.). A

Of these three problems the last is very cons’derably more difficult than the first two. The problem . \

of equilibrium by virtue of its definition is independent of time but it may often be non-linear in ::‘:

character. The stability of such equilibrium may, by virtue of the stability theory due to Liapunov®?, e

be tested by considering the stability of a linearised system having a small disturbed motion about ;«!

the position of equilibrium. If the system returns to its equilibrium position under perturbations of \ '_:-

sufficiently small magnitude, the equilibrium position is said to be stable. If it does so under all :,

possible perturbations of arbitrary magnitude, the equilibrium position is said to be totally stable. 2

The linear approximation is not a test for total stability. A

The third problem will generally be non-linear except when the control forces or external ?"

disturbances are restricted to be small enough to permit linearisation of the equations of motion as L-:

for stability: in this case the stability and response problems are solutions of the homogeneous and s

inhomogenecous forms of the same set of equations. \:::

;'a':

L

2.2.2. The steady state—-Without discussing in detail the problem of equilibrium :"7

(see Part II) we may consider the nature of possible steady-flight states. To do this it need only be ::'.::

q.. recalled that the acrodynamic forces are not dependent on the position or attitude of the acroplane ,;.
::: in space while the gravitational force is of constant magnitude and direction with respect to ‘carth’ . ,.:":
-g axes. L’-'—
The most general steady state in a homogeneous atmosphere clearly consists in v = const. and T

; r’ # f(¢) while & may be a vertically directed vector of constant magnitude; that is, a spiralling .'_:::
motion at constant speed. When the atmosphere is recognised to be vertically inhemogeneous then :::-:

v must be a horizontally directed vector. I

; o

o
;;.;
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The most usual steady-flight casc is that of rectilinear flight (& = 0) for which the cquations of :':-;':.
equilibrium take the forms Sy
T, + Mg, = 0
1+ Mg, r‘:-i
L7
L+ Mry, x g, =0 ot
P
x-.‘.l
f Z, 0 dV — g, - f odt' dV — J b, 5r'dS = 0 22, 1) o
Jr v s e
where the suffix 1 refers to the steady state. r«».-.-—x;‘.-
These equations determine, for given control forces or settings, the speed of flight, the attitude of e
the acroplane and the form of the deformation: alternatiy cly, w hen the speed (and altitude) is specified, oh
the required control forces and the resulting attitude and deformation may be determined (see Part 11). (\‘_:-'ﬁ
. oy . g . ’ " )\ '
. Upon solving the equilibrium problem any equilibrium state ry, = ry + r’; may be chosen as a .;,.}
new reference configuration in the sense of Section 2.1.1. .ﬁ?‘“%
For some purposes it may be possible to neglect gravitational forces. This arises when the r-%,:
- - » . . . - . ‘- v
\ (integrated) inertial forces in the steady state are large such as in a rapid pull-out or rapidly rolling Ve
motions. In this case the attitude of the acroplane in space is immaterial and the most general steady :‘\-_ N
state is v = const., & = const. and 1’ 5 f(?). s
e
2.23. The form of the deviant equations of motion.—The deviant equations of motion AN
relate to the disturbed motion of the aeroplane relative to a specified steady or equilibrium state and A
can only be constructed once the relevant equilibrium state has been solved. The variables in the S
deviant equations of motion are so defined that when they are all identically zero the equilibrium e
state is recovered. Egi‘
3 . . g . . N’n

Using the suffix 1 as in Section 2.2.2 to mean an equilibrium state then we define the deviant 5y
variables (without suffix) by the relations AN
L.:'::‘:
Vl = V1 + v \-_“-'.
Vs
Q= (2.2,2) ;;;;‘.“
s
l" "‘.
= (rp+ry) + 1’ Ve
A
. 3 . . . . . * .‘" il
where the suffix ¢ indicates that the variables refer to the total motion. Similarly, the forces are given AN
by the relations o
’ ’ ¥ &4

Fy = Fy(vy, ') + F(vy, ¥, v, 2, 1)

. L, = Ly(vy, ') + L(vy, t'y, v, R, 1) (2.2, 3)

’ e
L A 1
P |

L]
A

¢

.
'r
.

Yy = Py(vy, ) + P(vy, 1y, v, R, 1)

\.-.‘l
and ,.::_‘.
' g=8+8g. (2.2, 4) ey
L2@
Also, the total attitude of the body axes is given by the rotations ¢;, followed by the rotations ¢, (the H.F' _i -
deviant rotations). The deviations ¢; do not have the same meaning as the rotations ¢;, for the SN
rotations ¢, are carried out about the axis directions of the equilibrium state 1 whereas the rotations A
. . . . . . . P . ","-‘ "¢
$; were carried out about the ‘vertical’ axis system fixed in spatial orientation. Thus if {v;.} ‘,\;.3:
)
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and {z,,,}, are the components of a vector in the ‘earth’ and equilibrium axes respectively and {o;y,]
its components in the moving axes then

or = Wlean, = UMew}

«

’
«a

and, in particular,

{vart = fvad = 1-D [ {va} (2.2, 5)
The deviant equations of motion arc obtained by substituting (2.2, 2), (2.2, 3) and (2.2, 4) in the

AT [

equations of motion (2.1, 6), (2.1, 7) and (2.1, 16) and using the equations of equilibrium (2.2, 1). ::
The deviant equations of motion are written out in full in Appendix I %

2.2.4. The deviant equations to first order in the velocities.—The main step in the linearisation ‘_
of the deviant equations is to retain only those terms w hich are of the first order when v, £ (and, of \
course, r') are treated as small quantities. It is shown in Ref. 8 that when v, £ and r’ are all small 'f::'
then the aerodynamic forces are linear (integral or differential) functions of v,  and r’ (the __i
functional forms are dependent on the actual equilibrium configuration under consideration). This [_._
degree of lincarisation is thus sufficient to make the deviant equations linear except for those terms e

-

which involve the gravitational force and are dependent on the attitude of the aeroplane in space.
Thus for those problems in which gravity may be neglected the equations aie already linear. For

those in which gravity cannot be ignored a further linearisation is required in rotational attitude: no

restriction is required on the displacement of the origin unless the atmosphere is inhomogeneous.

«
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2.2.5. Non-dimensional form of the deviant equations to first order in v and .—The deviant
equations are rendered non-dimensional by choosing

AR

s 2
B
¢

P40

v e

(a) pV 32 as the unit of force,
(b) 1, a typical overall dimension of the aeroplune, as the unit of length, and
(¢) IV, as the unit of time,

2.
‘lll

- .
l,"’.,

where

P

-
e
L )

Vl = IV1| .

Then the non-dimensional deviant equations of motion, to first order in v, & and ' are (see
Appendix I)

q

'3
oA

-
Sy
-

el

e

v ¥ k 24+ %
M [‘g* + Q¥ x vl*] + %%- x M¥r,,* + f o* %7’;_ dV¥ = F* 4 Mg+ (22, 6a)
Ve i

Ay ¥ ag%
‘;:; £ Dt Myt X (R8xv,%) +

<
& "

;.'}-.';.' ®

}SF‘;-
e “-

M¥eo* x

2p'%
+ j 0¥ X aa:*o dV* = L* + Mry * x g* + f o*r*dV* x (g * + g*¥) (2.2, 6b) oo e
] h s * i
ta* ( /ov* 92y * T
Q* %) . *Spe V% 4. %1 SRV * 0
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A YOI A R R
P pl? pl®
¥ Tk z * F * L i
#o T mxo T - =l 2.2,
v pV’ pV’ F py A’ L pV*P ( )

In the above equations ry, has been replaced by r, in those terms which would otherwise involve
products of O(r'2), O(v?), etc.
The kinematic relations (2.1, 19) apply with (p, g, r) the deviant angular velocities, the ¢, the

, ‘carried axis’ angular velocitics about the cquilibrium axes and the ¢; the rotations from the
steady-state orientation.

"\ exe e s e mero

gl

2.2.6. The deviant equations to first order in attitude.—The deviant equations are fully ;::':::":.-
A . . Ol Y
linearised by taking the deviant rotations ¢; to be small. The form of the equations (2.2, 6) is il
unaltered except for those terms involving g. The relations (2.1, 19) and (2.2, 5) are lincarised, ]
. . R
the rotations ¢; becoming the components of a vector ¢; thus, ng
b -¢1-| s

q| = 14! (2.2, 8) -
¥ _¢3J : i
and A
-0 o R
(163 ¢2 ﬁ%!
Puay —{tah = | — ¢ 0 éo | [Mifvin}- (2.2,9) Tl
¢ —~b 0 P
; : o N I
In (2.2, 9) the antisymmetric matrix is equivalent to a vector multiplication by ¢. roen
-‘_;'::‘::‘;
2.3. The Forces on the Aeroplane. wevg
reve
2.3.1. The gravitational force.—In the deviant equations of motion the components of ARG
. , . L ] fo oy
the vector g {equation (2.2, 4)} are given by an application of equation (2.2, 5), thus, farint
= (- De, 23, 1) N
so that, to first order in the deviant rotations ¢;, RNy
g=¢ xg. (23,2) oA
2.3.2. The propulsive force.—The propulsive force will generally have a fixed direction ::‘{::::::
relative to the power unit but its dircction may vary relative to the body axes by an angle which Al
will be of the same order of smallness as r’. The magnitude of the force while being controllable ~:}::~:.
) will also change with the motion of the acroplane and in particular with changes in forward speed. if,‘;;‘”
2.3.3. The aerodynamic forces.—The surface traction ¢ due to the motion of the aeroplane e
through the air is obviously extremely difficult to specify for a general motion. It will depend upon RN
the whole history of the motion (due to wake cffects): the pressure and shears at any point on the M,
surface will depend on the integrated effect of the whole motion of every part of the acroplane. AV
‘& -..l. -\
11 kran®
l':\‘..-h‘i
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In addition, the type of flow regime encountered will depend on the variation, throughout the
motion, in the values of a typical Reynolds number and Mach numbe: for the acroplanc.

For the deviant motion relative to a steady-flight state the appropriate Reynolds number may be
taken to be that of the steady state but the variation in the Mach number may still require to be
taken into account particularly in the transonic regime.

The proble n becomes tractable when the deviant motion is lincarised in the velocities v and K.
The first-order deviant aerodynamic forces may then be said to be given by a sum of the following
contributions:

(1) the (first-order) change in the (unit-order) equilibrium forces due to (first-order) change in
speed treating the equilibrium stress coefficients as constant,

(2) the (first-order) change in the directions of the (unit-order) overall equilibrium force
coefficients due te (first-order) rotation of the resultant velocity vector relative to the body
axes,

(3) the (first order) change in th: (unit-order) equilibiium stress coefficients due to (first-order)
change in the Mach number of the equilibrium state and

(4) the (first-order) unsteady pressure ficld generated by the (first-order) motion of the
a..oplane when changes in Mach number are ignored: this component will generally be
treated on an inviscid-flow basis. It is shown in Ref. 8 that this pressure field may be
derived from the standard linearised potential unsteady-flow theory when due allowance
is made for the difference between body axes as used here and the steadily translating axes
employed in the standard theory.

2.4. Representation of the Aeroplane Structure.

2.4.1. Introduction.—The equations of motion (2.1, 6), (2.1, 7) and (2.1, 16) are not, in
themselves, sufficient for the solution of the acroplane motion even when the surface tractions are
completely specified as functions of the surface motion. The additional equations required are:

(1) the stress-strain relation,
(2) the equations of strain compatibility.

In effect, in order to proceed with a solution of the motion it is necessary to solve the Elastic
Boundary Value problem for the aeroplane structure in terms of a general surface loading. When it
is assumed that the stress instantaneously attains its equilibrium value consequent upon a rapid
change in strain then the elastic problem is effectively 1educed to the solution of the aeroplane
structure under general steady surface and body forces when the inertia forces are represented by
their instantancous values (d'Alemibert’s Principle). However, the assumption of an instantaneous
(conservative) stress-strain relation may not be justified in application to unsteady aeroelastic
problems since it cannot allow for internal damping. the solution of the elastic problem if this
assumption is abandoned becomes difficult and involves the history of the motion. A theoretical
treatment of internal damping in elasticity is given in Ref. 9.

In what follows here it will be assumed that the stress-strain law is the Generalised Hooke’s
Law. the modification of the equations of motion consequent upon the presence of structural damping
may then be made for those cases covered in Ref. 9: as a consequence of assuming an instantancous
stress-strain relation there is no need to retain the integration with respect to time in the variational
equation of motion, (2.1, 16).
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2.4.2. Suitable forms for the displacement field.—On the aeroelastic scale,* the classical
aeroplane consists of an assembly of beam-like and plate-like structures, while the modern integrated
aeroplane may consist largely of a single plate-like structure. More particularily, from an aeroelastic
point of view the deformations of interest are solely those at the surface, the internal displacement
field being of secondary importance.

As a consequence wide use is made of the simple bending theory of plates and the simple bending
and torsion theories of beams sometimes with approaimate corrections for shear deformation. When
the simple theories of bending are inapplicable then methods of structural analysis'® !} are used
based cn the consistent assembly (by displacement or force compatibility) of all the internal
elements of the structure and the external (point) force system. Nevertheless, in this case also the
part of the solution of interest to the acroelastician is that which relates the ‘transverse surface
displacements’ of the structure at a finite number of points to the loads at these points.

Having synthesised the structure in some way then two main methods are available for e
representing the characteristics of the structure in the equations of motion: AR

(@) in the case when beam or plate theory is applicable resort may be made to a Rayleigh-Ritz Ei:?‘
. analysis thereby expressing the surface displacement in terms of a scries of weighted N
co-ordinate functions; this approach stems directly from the variational equation of motion ‘\.4

I

(b) the Green’s or Influence Function for beam or plate may be calculated or for more general

structures a set of influence coefficients and solution of the equations of motion obtained ey

by numerical integration (collocation); the variational equation (2.1, 16) yields the integral ::j:;:
equation of motion directly by the simple device of taking the virtual displacement to be a 7::.:':

(small) arbitrary constant times the appropriate influence function when the variation in ;:'::'_‘r
strain-energy integral becomes, by definition, the displacement at the general point. E{r;;

In both instances the result is to replace the variational equation by a finite set of ordinary "“it"‘
differential equations with time as the independent variable. P:;:
Qs

l-«":n1

2.4.3. Application of the Rayleigh-Ritz procedure.—The method is extremely well known '-::-“

and the only point of interest here refers to the choice of body axes. Thus whatever axes are used ':;
each co-ordinate function should satisfy the appropriate axes conditions {e.g. equations (2.1, 11a), 3;"-{
(2.1, 11b) for Mean Axes}. When #n-vacuo vibration modes (normal modes) are used as co-ordinate :f‘:‘*:
functions they will already satisfy the mean-axes conditions. It is commonly asserted, for example, :;_'_:*
that normal modes are ‘orthogonal to rigid-body modes’ as if this were a unique property of normal ”; ::
modes whereas in fact it is a consequence of referring the vibration modes to mean body axes: é-m@‘
X so-called arbitrary modes can always be chosen to be ‘orthogonal to rigid-body modes’ simply by 7__—
applying the conditions (2.1, 11a), (2.1, 11b). The role of the overall body motions in vibration studies _:;:::::
is discussed in Appendix II. .:::.:j
4 o
pra™

2.4.4. Application of the Influence Function.—In like manner our main interest in discussing LA

D)
»

the application of the method () above is in defining the Influence Function for a structure which
is not subject to kinematic constraints, in conjunction with the choice of body axes.

* Omitting local aeroelastic effects such as panel flutter.

13
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~:-:{-i. The following discussion will naturally also have reference to thuse cases where a sct of influence -
e coefficients rather than an Influence Function is available but some remarks are added at the end
e . . .
:-,rt(: which refer more particularily to these cases. .
,“ The existence and nature of Influence Functions' ! for plates and beams is well known so that i
' ! it will be convenient fiere to pursue the discussion with reference to the simple bending of beans, ‘]
< . . .
e corresponding results for other cases are obvious, N
'-»“': At the outset, in defining the Influence Function for a beam, it is necessary to consider the beam 1
2‘,‘-‘:::\' to have sufficient kinematic constraint to prevent bodily motion and, for our purposes, it is A
<) convenient but not essential to consider a cantilever beam since conditivns at the free end already i
" ‘. satisfy the requirements regarding lack of kinematic constraint.
e Thus, let .
;(' _‘“ , d2 ‘.?w‘ . "
o o] — | = dlx A 2.4, '
gﬁ.;,:.j e EI dxﬁ) p), 0<a<l (2.4, 1)
PPN
}‘ . be the equation of the loaded beam subject to the boundary conditions A
- ) !
AT ¢ o
:',s;.‘v:: W= w—=0aty =0, d
.’;1"{ (1 d
A .
-_‘:.g“ .
ANS d*w d d*w\ - _ .
.] El — dv'- = (1,, d 21 = Oat v = 1. (..4.4', 2} -i
N A formal solution of the differential equation and boundary conditions is given by a I'redholm 3
z:.:: Integral Equation?, thus, ;
LY
! .
wi) = [ Glx, )t (2.4, 3) )
0 4
where the Influence Function G(x, £) satisfies the differential equation . )
a: Gy . .
:1; ( 'I-d—x-z—) = O(x—'é'), (2.4‘, 4‘)
8 being the Dirac Function, and the boundary conditions
dG :
G=5—=0 ata=0, '
dx :
d*G d*G .
EIW_—_(L (L‘Idz) —Oatx=1. 24, 5) :
t
As a conscquence of the fact that (d%/da?) [EI(d?/da®)] is a self-adjoint differential operator, the i
fuaction G(x, £) is symmetrical. :
In the case ¢. a beam without kinematic constraint and in which the ends are unloaded it is a :
. . r
necessary condition for the consistency of the differential equation (2.4, 1) and the boundary '
conditions '
dw d ) |
Ll — = — =0ata=0,1/ 24,6 '
7 s dx da2 ’ (2:4,6) .
»nA that j
e ! !
5% f p(3)d = f ap()dx = 0. (2.4, 7)
- e 0 0 |
I, .
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Since these conditions will be satisfied by any real motion involving the beam (by virtue of the

application of the overall equations of motion) we may, for the purpese of defining an Influeace
Function, equilibrate the unit load 3(x - ¢) by any consenient loading system provided only that it
alone cannot satisfy (2.4, 7). This arbitrary balancing system will clearly vanish from any real
solution by virtue of the satisfaction of the overall equations of motion (2.1, 6), (2.1, 7). .\ convenient
balancing system is the loading @ + bx where a, b satisfy the equations

f (85— ) = (a4 b)) dv = f (8= ) = (a+ by = 0 (2.4, 8)
0 [}
giving

ad) = 5 @1-38), HE) = 5 (26-).

It is easily verified that a + bx by itself cannot satisfy equations (2.4, 7) unless @ = b = 0.
The Influence Function G'(x, £) for the beam without kinematic constraint is then

G'(x, £ = Clx, &) - f ; G, £)[a(8) + O] dE . 24, 9)

The function G'(x, £) is not symmetrical. The function G'(x, £) obviously satisfies the differential
equation
d?
dx?

ar:G’
dx?

(EI ) = 8(v—£) — (a+bw) (2.4, 10)

and the b ary conditions (2.4, 6) with G’ written for w.

As it hﬁg the function G’ will still satisfy the conditions G’ = dG'[dx = 0 at & = 0 but
these conditions are no longer necessary. In fact, G is, for fixed £, arbitrary up to a small rigid-body
displacement ‘'so that, in general,

G 8) = G &) - | ' Glx, &)la + bE1d¢ + A(E) + B@x. (24, 11)

In the cofftest of the equations of motion of this beam the functions . and B are determined by the
choice of ‘hody axes. Thus, for attached axes 4 = B = 0 while for mean axes

”

fl m(x)G'(x, £)dx = Jl m(x)G'(x, £)dx = 0 (2.4, 12)
0 0

where m(x) is the mass per unit length of the beam: these two conditions yield simuitaneous
equations for 4(£€) and B(§) which are always consistent. There is, of course, no need to choose as
origin of co-ordinates one end of the beam but should an intermediate point be chusen then G will
be an amalgam of two abutting cantilever influence functions. the application of the coaditivns
(2.4, 8) (embodied in the balancing load system) ensures continuity of shear and monient between
the parts of the bcam mecting at the origin. For example, in a conyventional acroplane the origin will
generally be in the region where the fore and aft fusclage beams and port and starboard wing
beams meet.
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(2.4, 7) lead to

1 §

“=ar b g

upon using the fact that

I
o

1
J m(x)xdy
0

where 7 is the mass of the beam and &, the radius of gyration about the centre of mass. When the
mean-axes conditions are used to determine 4(£) and B(¢) the resulting influence function is,
conveniently, symmetrical. Other forms of balancing systems may be adsantageous in specific cases:
the extension to two and three dimensions is obvious.

In those cases where a matrix of influence cocfficients represents the siructure then the structure
will have been assumed to have sufficient kinematic constraints to prevent bodily motion: the
foregoing integral operations for deriving the ‘unrestrained’ influence function may then be
interpreted suitably as matrix multiplications preferably with the addition of a matrix which
represents a consistent set of integrating weighting numbers.

The matrix of influence coefficients for an unrestrained structure is necessarily singular. In fact,
if this matrix is of order m then its rank is (m —n) where # is the numbcr of necessary external
equilibrium relations to be satisfied. As an illustration consider a beam deflecting in a principal
plane: in this case there are two necessary external equilibrium relations, namely that overall force
and moment in the principal plane should be zero.

Let G be the matrix of influence coefficients for the beam under (in—1) point loads {p} when the
beam is suitably constrained. Again, the manner of constraint is arbitrary but we choose the
cantilever as being most convenient. Then if the (m — 1) deflections at the lvad stations are {w},

{w} = G{p}: (2.4, 13)

the built-in end is not included as a point-direction. T'o construct the influence matrix for the
unrestrained beam we proceed as for the influence function but first include the root as a station by
writing

20 0 {0} [0
{w} {0} G 11{#}

(2.4, 14)

L

f o} . . . o] . »
oM where w, and p, are the displacement and (point) load at the root station. The balancing load is
d again taken as A,{1} + B;{x] where 4, and B, are given by the overall equilibrium equations
o
.'.-’ 1 0 =
v L= {1y {4, - (1Y (3, =
3 v =y (Ud; = oV {8}B, = 0, j=0to m. (24, 15)
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ol By choosing the centre of mass as origin an alternativ e balancing system nay be employed which is -
particularily convenient when also mean axes ave used. T'his system is P
.- =
. a(&)m(x) + b(&)xm(x) -
£l

and, as before, it is easily verified that this system alone cannot satisfy (2.4, 7). The equations iy
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The matrix G’ is given by {cf. equation (2.4, 9)}

o - 0 {0 o o (A6} + B
"[w} G] [w} G] SR

76 o
{Gu} G

Faop ] -G |:Po:| .
. | {w} ] {h

That G’ (of order ) is of rank (1 — 2) may be demonstrated by noting that for the loading systems

o)~ L) = ] = L)
(] HJ‘ wJ’ )

then ,

(2.4, 16)
and clearly takes the form

(2.4, 17a)
finally,

(2.4, 17b)

it
=

Thus the columns of G are connected by two linear relations, that is, the rank of G is (m —2). In
addition since

dW[m]=0mMBhHm=0
()

for all &, 8 when the loading system p, is sclf-equilibrating we may add to G’ the arbitrary columns
a{1} and B{~x}. Similar results follow for other balancing load systems.

3. A Discussion of the Equations of Motion with Reference to Current Methods of Inuvestigating
Aeroplane Stability.

3.1. Introduction.

This discussion relates the foregoing general analysis to the methods currendy used to estimate
the static and dynamic stability of flexible acroplancs. Emphasis is laid on the estimation of the
stability of the trimmed, level-flight state.

Broadly speaking, current methods for dealing with these problems fall into two types, one an
extension of the classical flutter analysis, the other an eatension of classical, rigid-acroplane stability.

The slender integrated configuration differs considerably in layout from the classical acruplane
and it is by no means obvious that behaviour known to be typical of classical aircraft will apply
to this configuration. Here, attention is drawn to some of the points over which some doubt may
arise, while in Part II this type of configuration is dealt with in some detail.

3.2. A Discussion of Current Methods.

3.2.1. Inclusion of the ‘rigid-body modes’ in flutter analyses'’.—When, in addition to the
assumption of small change in attitude of the acroplang, it is alsu assumed that the displacement
of any poiut of the acroplane from a rectilinear flight path is small then the equativus of motion may
be constructed so as to refer the motion to steadily translating (i.c. Newtonian) aves. .\ procedure
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i‘:‘-_ of this type is usually followed in investigations of the flutter of aeroplanes including the so-called K
li', ?:{ ‘rigid-body modes’ (of pitch and vertical translation, for example, in the symmetrical case). N
.\‘{.‘ The chief drawback of this approach is that changes in forward speed must be excluded from the o
WA deviant equations of motion in order to climinate acroplane motions which imply deviations from a i
] rectilinear flight path which are many times larger than a typical acroplane reference length (motions ::
'~::3::: of phugoid type). The result of this is to suppress any reference in the deviant equations of motion -
to the actual equilibrium configuration unde' consideration: the trim speed is irrelevant except in :.‘_
-'_:‘\-::; so far as it is implicitly present in the ratio of a typical structural stiffness to a typical dynamic ;
pressure. In practice, in these cases it is usual to imagine an ‘equilibrium state’ in which all forces 5

both elastic and aerodynamic are zero: weight is necessarily ignored.

With the advent of the integrated configuration it is felt that stability investigations should
properly include the full overall motion of the aeroplane. The deviant equations of motion then yield
information relating to the static stability of the aeroplane whereas the roots of lowest frequency
for the abbreviated equations yield information about a mode which often resembles the short-period
motion of a rigid aeroplane: whenever this mode shows a ‘static’ instability the ncglect of change in

forward speed is not justifiable. . j.
3.2.2. The method of modified derivatives'®*,—Until fairly recently the approach used in oy

aeroplane stability and response calculations which take account of flexibility has been based on the -
idea of frequency-separated systems. 'The method is essentially a modification of the rigid-acroplane :!
equations of motion and quasi-steady aerodynamic forces are used based on the assumption that, for "
the modes of interest, the frequency parameter will be low. The number of equations of motion :::i
remains unaltered but the lowest-order coefficients are modified by an allowance for flexibility, such ,\::
allowance being based on an equilibrium or steady-deformation analysis of the aeroplane structure T
(e.g. interia forces are neglected). Practically speaking, this approach is applicable whenever the El
typical overall-motion frequencies are much smaller than the lower typical vibration natural -
frequencies of the structure. But the vibration frequencies of interest are those of the aeroplane in
flight and these frequencies may depart considerably from thecir ‘still-air’ values: under such :-::
conditions the principle of frequency separation may often fail and the number of equations of :'\:
motion should be increased. =)
Further, in calculating modified derivatives it is usnal to imagine the major parts of the aeroplane S‘
to be kinematically constrained (i.c. built-in) at various points. For the classical layout this procedure "
leads to modified derivatives which are physically meaningful but it would not be an exaggeration :\
to say that the concept of the modified derivative as applizd to the integrated configuration is ;\\\}
vitiated by the lack of obvious physical meaning to be attached to such derivatives. éal
The pitfalls associated with the application of kinematic constraint of any kind to the slender e
configuration are discussed in Ref. 15. :‘_'.:
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APPENDIX I

The Deviant Equations of Motion
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y

Motion under no Forces—I'ree Vibration -
(|

In the usual approach to the free vibration of unrestrained strucwures the motion is referred
directly to Newtonian Axes with the result that bodily motion may only be allowed for within the
restrictions of small overall displacement and rotation. Overall equations of equilibrium are then
applied which lead to conditions on the resulting motion which are identical to the mean-axes .
conditions (2.1, 11a), (2.1, 11b). The result is to refer the motion to mean axes which are at rest -
and are therefore, ipso facto, Newtonian Axes.

However, there is ro need to assume that the mean axes are at rest and more general motions
exist which satisfy the equations of motion when no extern-l forces act on the system. Of all these -
general motions only that involving steady, non-rotating translation (v = const., & = 0) of the

mean axes will yield what is normally referred to as free-vibration modes. z
Bat above all it should be noted that the equations of motion when no external forces act contain i‘
no reference to position or orientation in space so that these are, at all times, arbitrary and without .o
limit. This conclusion is quite outside the scope of the solution, const.; + const., x r, assuciated 5
with the Neumann Problem in elasticity. .
Finally, while it is certainly convenient to refer vibration motion to mean axes it is not essential: N
the contributions of overall and deformation motions will merely be altered to yield the same E
total motion. -
R
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Part II.— A Study of the Trim State and Longitudinal Stability
of the Slender Integrated Aeroplane Configuration

~
W
1

Swmmary.

/@Y

The general analysis developed in I'urt 1 is applied to the calculation of the cquilibrium states and the
longitudinal stability of such equilibrium states for the slender, integrated acroplane configuration.
The slender configuration is treated essentially as having only longitudinal flesibility but an extension to

-
S e

’

include spanwise flexibility is included. .
Slendes-wing theory is employed both in the trim state and in the deviant equations of motion to give the ;
aerodynamic loading.
The metho 1 of solution of the equations of equilibrium and the deviant equations of motiun is by a collocation R
procedure well suited to digital computation. .
A simple numerical example is presented to illustrate the application of the analysis. .
1. Introduction. -
In this Part the general analysis of Part 1 is applied to the estimation of the stability of the ‘_\
symmetric motion of a slender flexible flying wing this being a model of the slender integrated type -

of aeroplane configuration which may prove suitable as a supersonic transport cruising in the
Mach number range 1+8 to 2-2 or thereabouts.

Before the stability of the motion relative to a specified trimmed state can be studied the trimmed

MRl
s 0w

state itself must be determined at all airspeeds so that the calculauon of this steady state forms an '
integral part of the following analysis. }::
The trimmed state is taken as level trimmed flight and the atmosphere is treated as being v
homogeneous from the point of view of the deviant motion. !
The main interest is in the stability of the aeroplane as a whole and not in flutter as such. Thus .:“_-‘
only those modes of motion having significant contributions from overall body motion are of direct "
interest. Hence the slender wing is treated essentially as a flying beam bending longitudinally and ::<
having rigid spanwise sections but the extension of the analysis to include spanwise flexibility -
is discussed. i
Linearised slender-wing theory is used in setting up the deviant equations of motion and the
equations for the trim state. However, the aerodynamic theory used in determining the trim state ‘_
need not be identical to that used to obtain the ceviant forces and may allow for non-lincarity. But ':::
it should be borne in mind that since the relative deformation is assumed to be small the change :'_:‘_
in the local angle of incidence over the wing surface due to flexibility will also be small: hence if &
a non-linear aerodynamic theory is to be used it should take the form of a suitable Taylor Expansion "
in the relative deformation about a mean overall incidence. ~
The actuai method of solution of both the deviant equations of motion and the equations of ::
equilibrium is by collocation. That is, the variational equation of motion is satisfied at only a finite f;‘_:'_
number of points, in this case distributed along the wing root chord. By this means the continuous e
system is reduced to one having a finite number of degrees of freedom and the usual methods of <
solution are avaijlable. In deriving the deviant equations of motion and equations of cquilibrium for <
this equivalent dynamical system it will be seen that the only numerical technique required ::j
throughout is that of numerical integration. ::-:
=

21 {_g

A\,

%

¥

v

ST - - Ry RS e .'::

O v'. S T A T T T { et T e T T
- 'J" " n'-..-.:,l EALRT .(_ c" I',‘ ‘1‘&. .'J'..‘ E.x ~ .‘ . .‘ e e AT
. .:.A.al.r:.rJz;",ch.'c_'f‘ .r:".x L .éi.j&gl L A N AL AP By




L B N N T A R T N A S L P A S e B P T e o

[ S L T v NN A ~

An idealised point force is supposed to act at the trailing edge of the wing in order to be able to
trim the actoplane. This contrul force is assumed to be infinitely disposable and no attempt is made
to elucidate its origin but it is a close representation of a flap-type control situated at the trailing
edge of the wing.

Finally, the analysis is applied to the simple example of a delta wing having a given mass
distribution and whose overall characteristics are probably typical of an aeroplane suitable as a

supersonic transport.

2. The Integrated Slender Configuration.

2.1. General Specification.

The general layout of an idealised, slender configuration is shown in Figs. 1 and 2: the
cruss-section could be more generally a wing-body shape. Fig. 1 shows the main geometric parameters
of the acroplane while Fig. 2 shows the sense of the lincar and angular velocities, forces and
moments and loading per unit length.

The reference length is taken as the root chord /and the origin of the axis system is at the mid-point
of the trailing edge.

"The control force P represcnts an idealised acrodynamic control; in practice P would be supplied
by clevator-type controls giving a short region of distributed pressure loading. The force I’ being
aerodynamic in origin will have the form

P = pV2(control coetlicient)

for fixed control angle relative to the trailing edge of the wing. On the basis of Slender-Wing Theory
the control force may be altered by varying the control cocefficient without affecting the pressure
distribution on the rest of the wing: the control coefficient (symbol P¥) may be loosely referred to
as elevator angle. Tt is assumed that the control is irreversible so that in a perturbed motion the
control coefficient is constant. Thus the control force P varies in proportion to the deviation in
forward speed (Section 2.3, 3, Part I).

2.2. Numerical Integration.

As pointed out in the Introduction all the numerical operations required for solution of the trim
equations and the deviant equations of motion are based on the evaluation of definite integrals.

The reduction from a continuous system to a dynamical system is made by representing the
continuous (longitudinal) displacement curve {(x) by its values {; at a chosen set of collocation points:
thus every numerical integration will be based on this set of points throughout the calculation. The
points will be associated with a preferred numerical integration formula and may not, in consequence,
be equally spaced.

In the general form of the deviant equations of motion and the trim equations the set of collocation
points is not specificd beyond an indication of their total number. The integration formula is
represented as a set of numbers assembled into a diagonal, weighting matrix indicated by the symbol

Ul

2.3. Structural Influence Coefficients.

Since spanwise sections of the wing are treated as being .igid the wing behaves essentially as
a non-uniform beam in bending. The simple theory of bending is assumed to hold but no difficulty
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is presented if an approximate allowance for shear deflection is made based on the usual simple
theory of shear in slender beams. A discussion of the calculation of influence coefficients when
spanwise flexibility is included is given in Section 5.

Let EI(x) be the bending stiffness of the wing when treated as a slender beam of variable
cross-section; then the Influence Function for the beam considered as built-in at the trailing edge
is most conveniently expressed by the Unit Load Equation (Principle of Virtual Complementary

Work) in the form
Cp o [FE=E=N)
G(x, g)_fowwd&, < €

[T
AP

[ TN

. ay m ey
v S e
'- » At

.
=
f(a-2) (=) R
= | e ds’ < X 23,1 N

[y s ¢ 23,1) :

In the general case these integrale will be evaluated numerically to yield a sct of influence

. coefficients for a chosen set of collocation points (the root station contributes a null row and

column, see Part I, Section 2.4.4).

(

The Influence Function for the unrestrained wing is given by {equation (2.4, 11), Part I} E::‘

. ! o
G'(x, &) = G(x, &) - f G(x, &) a(€) + b(E)EVdE + A(€) + B(é)x  (2.3,2) t"

0 \

where e
2 6 s

a(§) = 5 (21-38), b(§) = 5 (26-1). o

The second integral may be evaluated numerically using the influence coefficients C;;. :}::
The unrestrained Influence Function referred to Attached Axes at the trailing edge is given from 0
(2.3, 2) by taking 4 = B = 0. The unrestrained Influence Function referred to Mean Axes at the ::',‘:
trailing edge is given by taking A, B as in equations (2.4, 12), Part I: these equations may be '?
evaluated numerically. 5-«\
It will be seen in Section 3 that in setting up the equations of motion the quantities ::-:
G 8 7Gx 8 =

T T N

are required for the unrestrained Influence Function referred to Attached Axes. These are given from ;i
equation (2.3, 1) as Ry
aG’ da db "

—=F "5 23,3

G 32G N

= " 2

where -
BG = (x x) &
fr-2) 5
x— & {

= ; : 2.3,4 N
l BT ', €< (23, 4) T
and )
0*G o
55’:—2 =0 , ¥ < g :::-
x—-¢ i
= e < v, 23,5 My
e ¢ (23,5) o
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The foregoing relations (2.3, 1), (2.3, 4) and (2.3, 5) constitute all the information required on
the elastic properties of the wing.

In writing the equations of motion and the trim cquations the Attached-Axes unrestrained
Influence Functioh is used. The rcasons for adopting Attached Axes are given in Section 3.1.

2.4. The derodynamic Loading.

For the calculation of the deviant, unsteady aerodynamiic pressure loading fitem (4) of Section
2.3.3, Part 1} the Slender-Wing Theory™ ' is cmployed; spanwise sections being rigid then the
local loading per unit root chord is dependent only on the downwash at that section.

Although the same theory need not necessarily be used in calculating the trim state it is counenient
to do so. However, significant non-linear ¢ffects may be present in this type of wing due to Jeading-
cdge separation so that in calculating the trim state a non-linear theory might be preferable. But
there seems no alternative at present to the use of lincarised unsteady aerofoil theory for zero
mean incidence in caleulating the deviant forces. The use of noun-lincar acrodynamic theory in
calculating the trim state is dealt with in Ref. 15.

In application it is assumed, with resulting considerable simplification that the trequency
parameter of the motion is not too high so that, in the cross-flow plane, the velocity potential
satisfies Laplace’s Equation (sec Ref. 20 for these cunditions in dctail). Then contrary to almost all
other unsteady theories it is feasible tu dispense with the restriction of simple harmonic motion
and since a general motion may be dealt with the deviant equations of motion may be solved
completely in the ser se that the frequency and damping of each constituent mode of the total motion
may be determined.

The deviant aerodynamic forces are derived as for a flat wing but no difficulty ensues if the
cross-section is taken as a wing-body combination. The inclusion of spanwise flexibility is discussed
in Section 5.

The deviant acrodynamic loading per unit length [(»), taken positive in the negative z-direction
(Fig. 2), is given by

e = 2 (- 2
where the non-dimensional scheme of Section 2.2.5 of Part I is employed and w,*(x*, t*) is the

fluid velocity normal to the wing surface (downwash velocity). ‘This velocity is given in terms of
w*, ¢* and {* by (Ref. 8)

(24,1)

aL* ar*
'w/”“ = w¥ — g¥a¥* — T + El (24’ 2)
and finally,
s 2 arr | atvy
Ha* %) = 7 e = e | | %2 [a® — g¥y% — 02 L 25 Y | 24
(¥ %) = 7 (at"“ ax*) |:c (70 g* — s+ 8t’*>_] (2.4,3)

The derivatives with respect to a* do not lend themselves to accurate numerical evaluation;
however, it will be seen that in setting up the equations of motion these derivatives may be
climinated by repeated integration by parts.

3. The Symmetric, Deviant Equations of Motivn for the Slender Configuration referred to Attached
Axes at the Wing Trailing Edge.
3.1. The Deviant Equations of Motion.

For the deviant equations of motion the attached axes are most conveniently taken to be ‘wind’

24
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(or stability) axes: further, in conformity with the adoption of a linear acrodynamic theory, it is
assumed that the trim-state, local incidunce of any scction of the wing is small. Then in the general A
deviant equations of motion (2.2, 0) of Part I we have, for symmetric motion,

IR B

J@

vE = (¥, 0, w¥); Q% = (0,4%0); ¢y =¢3 =0
¢ =0

©r
£ -

= (X* 0, Z%); L* = (0, O%, 0)

VT st

and for simple longitudinal bending of the wing as a beam,

r = (— ag() 0, ;(,x))

NPSEN

to first order.
Neglecting rotatory inertia terms and setting

. .n'a 1, \.-5_-«_,:‘. R

Il 1%e

‘ L&) = G'(x, &)Sc

o B Y
111{1

in the variational equation (2.2, 6¢) Part I, then the deviant equations of motion are:

% +w*0 = X*  (3.1,1)

To R e

dw* o%L*
mr* {.“' I:'(—{t’s? - 9* dt”“x *] J fm(‘ ) 7% d‘t*] =Z* (3°1’ 2)

*
m (o[ g+ ter e ] - f St Sz o) = 0% (.19

0 (31,4

LSS Y

1) + [ oot €0 (1260 + mfu(e) (e - 0 = o 60+ ) ot

e

where the reference length [ is taken as the root chord (Fig. 1) and k* is the (non-dimensional)
radius of gyration of the wing about the y-axis. The mass and flexibility parameters m,*, c,* are

.:’

defined at the reference section as ,}?
<
m pV2lt b
* = * v,
m* = oF ¥ = T (3.1,5 and 6) ,._:.
. . . . 3 ., e .“
. "T'he mass distribution and influence function are expressed in terms of these parameters by writing —
-
) W) = M%), GHa% £ = 6fols®, £) :
where the ‘f’ functions are purely numerical functions of x*, £*. The mass of the acroplane is given by -
1 1 =
M* = f m*(x*)da* = m,.*f S(x¥)dx* = pin* 3.1,7) e
0 0 K]
o
where p is constant for a given mass distribution. '!"~_,..
<
y
rﬂ *
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The aerodynamic forces are the sum of the four contributions outlined in Section 2.3.3 of Part I
where, in this case, the unsteady contribution is given by equation (2.4, 3) based on Slender-Wing
Theory.

The trimmed-state acrodynamic forces are

|
Zl — ’ ro % w * ; .
;i';;e—lg = C.Ll. + CTl w,* = ;)[71312 = W, (3.1, 8(1)
X 0= = Gy (3.1, 8b) |
svE =0 = Cn' = Cnn . i
Ql ' I/V.\' ‘
b‘f;-l._,lg, =Cyy = Volg = Wi*a* (3.1, 8¢) .
p:/' = [ *(x¥%) + P*o(a*) (3.1, 8d)
where 8(x*) is the Dirac Function representing the (idealised) control force and it has been assumed I
that the thrust line is along the tangent to the wing at the trailing edge. The dash on the Lft, drag .
and moment cocfficicnts is to denote that they are based on 2 and not on wing arca: the more usual .
cocfficients are given by ‘
. AR. (1 |
C CL —**2——- (;‘(;) , etc. !
The control coefficient P,* and steady loading /;*(+*) can only be determined by solving the trim j
problem for the flexible configuration; this is done in Section 4. d
It is assumed that thrust remains constant throughout the deviant motion and any change in the
trim-state drag coefficient duc to the deviant deformation is ignored.
Finally j
d (3C, , o qacy , :
{p,m,"“ e (31714L>1 M, +2Cy, } u* — {c,,l - (3&’1)1} w* + Cpy' = 0 |
ac, , d .
{(W‘%)l IWI + ZCLI } u {,um, d * + Cl)l f lw.*(lv*} w* ,l
d 1 "C”“ .
- {p.m,* (1 + x* (—7{*) - fo *‘dx”“} q* +m ”“f — T 5 dx¥* f [ ¥0*dx* = 0
aC M zc Ty ¥ * .*d ¥* ¥
T 1= 2C %y w* — L um ¥ ¥ d"“ [ *a*dx* b w* + ;
* * *2 % * 825* ! ;
+ { pom, (x +k 7 *) f [p*a*dx } - m, f fin* T ds* — f , [ ¥x*{¥dx* = 0 .
{*(\*) * .
ED 4 [t o9 [ (g lireen + Poaenn) o 2n(en) + Prscen] o + .
{
+ Lo M(E¥)w* + LX(EN)g* + 1K EDHER) + :
dw* dg* . RUH(E¥) .
— ’X‘ —_— * — * = . '
+ "lf fm(‘f ) [ It* dt* § + at*) ]} 1§ (3 1, 9) )
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3 are the complete deviant equations of motion for the slender configuration where [,.%, [.*, [.*
% are the linear operators,
-y ¢ = (2 ) e 3.1, 10a)
wr T (3.1, 10a
i ’
‘ d d .
4 _— 2 s CO
; [,1.* = ~qr (52;-* - W) skZy¥ (31, 10[)) :-‘:
b3 .
1 d a\Tr 0 d
¥ =r - =) 19 [z — =) |- 3.1, 10c
. § ot ox¥) | \or*  ox* (3.1, 10
X O]
> Since the integrals involving the acrodynamic operators /,.¥, [,,* and [.* are to be evaluated {:';_;
M) finally by numerical integration it is clearly important that only {*(+*) and not its derivatives should N 1‘.
A appear in these integrals since the presence of a derivative of the unknown {* would require the ::':.:_
- use of numerical differentiation which is notoriously inaccurate. It is possible to achieve this by ]
repeated integration by parts at the expense of introducing derivatives of the influence function G’ ST
VI and the semi-span s*: however, equations (2.3, 4), (2.3, 5) show that the derivatives of G are N
» 3 . . 3 . 3 ~ '--
N available as integral expressions and it is assumed that the wing planform will be known closely o
t enough to allow calculation of the derivatives of s. But the complete elimination of the derivatives N
" of {* from these integrals depends on the use of Attached Axes situated at the trailing edge of the E&i
» wing and the fact that the wing (or wing-body combination) is pointed. These conditions are .
4 explicitly Aty
s*=0at a* =1, -
o
W AR
™ ar* A
[ —=0*=0ata*=0. =
i e
Details of the above reduction are not given here {but see equation (3.1, 12)}. :-:-'_:'.'
The integro-differential equations of motion are now replaced by a finite set of ordinary differential et
;ﬁ equations by replacing the function {*(x*) by the vector {{*} the elements of which are the values .-‘.':--:
L of {*(x*) at the (n+ 1) collocation points, x,, j = 0 to #. The integrals are evaluated by numerical ';‘)';l
integration using a weighting matrix [[];, as outlined in Section 2.2. Equations oo
o} e
3 _ o _ O
% (Dayy +byy) bys C13 u* e
g by (Dagy+by)  D(Dagy+bys) (D¥a} 3+ D{bY 2 +{c} ») w¥ tf:-:::
[SUR-
® by (Dagy+bs)  D(Dagy+ bys) (D*a} 3+ D{bY s +{c}'s) p | =0 G1,10) P&
¥ D
LY I ‘41\:‘l
: ®h P@u+B) DOE+E) (DY) + D+ [+ 5) | | N
L r /4L . "\yi.!
i .* are now the (dynamical) equations of motion for the aeroplane where, for convenience, the symbol D S
$ replaces d/dt*. The origin of axes at the trailing edge will normally be a collocation point but since, by
- definition of attached axes {* = 0 there, the vector {{*} need not contain a value of {¥ for this point.
i Hence the vector {{*} contains only n elements for # + 1 collocation points one of which is at the
: trailing edge. However, the numerical integration and hence the weighting matrix [[];, are carried
¥ over n + 1 stations.
27
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The scalars and row, column and square matrices appearing in the dynamical equations (3.1, 11)
are as follows: unless otherwise stated row, column and square matrices ate of order 1, (n+41);
(m+1), 1; (n+1), (n+1) respectively; a dagger t indicates that the clement, row or column
appropriate to the trailing-edge station has been omitted.

a C])’

ay = pm*; by = (‘W

) M, +2C,,/
1

. (9C) ,
bp=-C, - (_33)13 ez = Cpy

aC,’
by = (WIL)I M, +2Cp

Uz

pon* + o {1} [f] {%25 bay = Cpy + ms*?
D

fAL )

Ay = — pm*s¥* — 7 {1y [Jt' {S*ex*}; byy = — pm.*
b

weiar [f] =91, ,

o B[]

9Cy, )

a2

i = =t = Y | [ 6% b = — ity [ | e

a3 = pm,*R*2 4 o {w*2)/ [ f ] {s*2}; byg = pm*x* + o {¥) [f] {s*2}
D

D

Haa = — m¥* {4y [ f ] , T U ] b
TH{oYs = —= {Zs’*‘z +a* Z_jc:“f}, UJ )
ters = == () [[],

opP*

100 = Ual [ [], (Magz+2) 10+ (0 357 +28%) G
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4
tas = mr U [ [ et [[] 6 ]
D D <
ds*2 =
b}y = — 1
_ e =[], 15
N s = = m* /el [] 6t -l [ [] ey %
1 D \
= 2
o tth = - m* U [[] t+ova[[] (0] 1
i = m* ) [ [] thdo+lfad [[] 19 (
. ¥
- 8f ds*? _
1 1=+ (2] [[], - va [ f], [z g
N LS
Y e l:af(;] [ f ] [ds’*‘z]) ‘o
o ol = [s%2 A — 1. 3.1, 12 Y
4 ti == (][], 0+ 5] [/, [ G412 &
W A
R 3.1.1. Steady-state Mach number.—All the aerodynamic forces derived from unsteady F!
o acrofoil theory are fundamentally functions of the stead ~-state Mach number. However, in this ;:'_-
N instance for the particular form of Slender-Wing Theory used the dependence on Mach number is ::-:
t'.1 absent: this fact will be used in the ensuing development but the restriction is not necessary to the ;
~ analysis. "o
h In addition since the configuration is slender the variation of the steady-state aerodynamic forces Ej
- with Mach number is likely to be small; that is, we may take by,, by, by, and {8}, to be independent -
N of Mach number. ':::,
. “
\:" N
o 3.2. Solution of the Dynamical Equations of Motion. b
1 ‘I . . - B
-/ The solution of the set of homogeneous equations (3.1, 11) is of the form ?&f
I 0=
k"::' u*: w*, 0, Ci* oc et :"‘
. :h.; -':
fn:::' where v is in general complex. It is convenient to use the symbols u*, w*, 8, {* also as the complex o~
!‘ amplitudes of the motion ¢** and then the algebraic equations for the determination of the modal 5‘:
: columns =
u* ’:: '
- :
&k 5
and the characteristic roots v, are simply equations (3.1, 11) with D replaced by ». The presence of ::::
a positive real root v, indicates a divergence while the presence of a complex root with positive real -;:_
part indicates an oscillatory instability. -7
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The equations are most conveniently dealt with by reducing the second-order equations to an
equivalent set of first-order equations when the v, and the modal columns appear as the cigenvalues
and eigenvectors of a single matrix with real elements. The form of the equations of motion (3.1, 11)
is, in terms of partitioned matrices,

[ A,D + By, AuD* + ByD + Cm] [ql] ~0 (3.2, 1)

AnD + By, ApD?+ ByyD + Cp | |go

=u* do o 0
““LJ“’%"LW]

The vector ¢, contains the ignorable co-ordinates #* and w*.

Introducing the velocities corresponding to the non-ignorable co-ordinates ¢, = Dg, as
subsidiary variables then equation (3.2, 1) may be rewritten

(DD +¥)y = 0 (3.2,2)

where

where

-All 0 A2l Bll Cl2 Bl2
0 I 0| ,=]0 0 -I

..A2l 0 A22 1 BEl C"‘.! B22

¢

and

%

Y= q%]|-

4>

The order of the matrix equation (3.2, 2) is (4 + 2#) where (n+ 1) is the number of collocation points

covering the wing root chord.
The standard eigenvalue problem is usually stated as
(WI+U)x =10 (3.2,3)
and a variety of methods are available, suitably embodied in digital computer programmes, to deal
with this equation.

Programmes do not seem to be available to deal directly with equation (3.2, 2). The point seems
trivial since a premultiplication by ¥~ or -1 will yield (3.2, 3). However, in this case the use of
the unrestrained influence coefficients renders @ singular; in fact @ is of rank 2(1+#) (see Part I,
Section 2.4.4). This is seen immediately if it is noted that parts of the matrices A, and Ay, are
derived from the influence matrix [f,] by multiplication by non-singular matrices. The matrix ¥ is
not generally singular duve to the presence of the unit matrix in Cyy: however, it will certainly be
singular whenever the static stability is limiting, that is, when » = 0 is a root of equation (3.2, 2).

In view of these considerations the following course is adopted. Let B be any arbitrary constant,
real or complex; then equation (3.2, 2) may be written

((v=B)D + (T"+pD))y = 0. (32,4
Let p = 1 /(v—B) then the equivalent eigenvalue problem is
((F+BD)"10 + ul)y =0 (3.2, 5)
wherein the root v = 0 appears simply as — 1/8. The matrix ¥ + Bd will only be singular if it
30
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happens that 8 is an cigenvalue of equation (3.2, 2). The choice of 8 is best dictated by a knowledge
of the probable value of the roots of smallest modulus of equation (3.2, 2). It is clearly convenient
and indeed essential for many digital-computer programines to take g real.

For a given aeroplane layout the non-dimensional scale parameters to be specified for a solution
of the equations are:

LR L v xo W
mX = ik ¢ Tl and W, VIR

Also, before the equations may be solved the trim state must be known: we thus study the stability
of the trim state appropriate to a forward speed 7"y and weight parameter W’;*. The parameter ' *
is thus necessarily a variable parameter for a complete study of stability. Should the altitude be fixed
(at least for one series of calculations) then the parameter m* is fixed: the parameter ¢ * is most
conveniently replaced by the quotient

e*
=
where
Wiz
* -
e* = BT (3.2, 6)
is a fixed parameter for the aeroplane. It may be noted that since W = Mg then
W* = umX¥g* (3.2,7)

where g,* is the Froude number glf/V2.
Thus in the equations of motion (3.1, 11) the factor 1/¢,* multiplying the unit matrix is replaced

by Wy*/e,*. Then the coefficients byy, by, ¢13, byy, b31, the column {8}, and the factor W, *[e* vary
according to the trim state considered: all other coefficients are fixed except for b,, but if we neglect
Cp,’ in comparison to m(s*?),.,._, (the lift-curve slope of the rigid aeroplane) then this coefficient may
also be considered constant.

It may be noted that when the change in forward speed u* is suppressed the first row and first
column of equations (3.1, 11) are eliminated. These contain all the coefficients dependent on the
trim state with the result that reference to the trim state is now completely absent from the deviant
equations of motion; the most significant term dependent on the trim state is {b},. The significant
parameter for this reduced set of equations is ¢,*: this is a purely acroelastic parameter in the sense
that change in stiffness EI, is indistinguishable from change in V2 (for constant altitude).

The free vibrations of the aeroplane are given from equations (3.1, 11) by taking all forces except
inertia forces to be zero. The two parameters m,* and ¢,* now combine to yield the single parameter

v % = vim¥c (3.2, 8)

provided the contributions to the inertia coefficients due to aerodynamic inertia are ignored
(in-vacuo vibrations). It is much more convenient for the calculation of vibration modes and
frequencies to replace the attached-axes influence coefficients by influence coefficic.its referred to
mean axes (at the trailing edge); the equations for the in-vacuo vibration modes are then simply

(sl + 55 2] 0 = 0 (32,9

m*
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where [a,,] is given by the appropriate equation of the set (3.1, 12) with the mcan-axes influence
coefiicients substituted for those derived for attached axcs. It may be recalled that, as defined, the
inertia coefficients [a,,] are proportional to m *,

4. The Trimmed-Flight State for the Slender Configuration.
4.1. Trimmed Level Flight.

The calculation of the trim state is based on the application of Slender-Wing Theory for rigid
spanwise sections as for the deviant equations of motion. Accordingly it is assumed that the
aerodynamic forces are not dependent on Mach number.

The aeroplane structure is again represented by the influence function for attached axes at the
trailing edge, the contro! force is represented by a concentrated load at the trailing edge and the
thrust is assumed to be adjusted to give level flight at a given airspeed.

As defined in Part I, Section 2.1.1 suffix 0 is used to designate a reference configuration which is
not necessarily a real equilibrium configuration for the acroplane. Here it is taken to mean the
aeroplane configuration when completely unloaded. Thus the specification that the acroplane has a
certain ‘built-in’ camber refers to this idealised state: the uncambered aeroplane is defined to have a
planc mean surface in the reference configuration. It may be imagined that the reference
configuration will result from the aeroplane being supported at a great many points so that the
weight is locally equilibrated. When reference is made to the ‘rigid’ acroplane it is to be understood
that the corresponding invariable configuration is the reference configuration with or without
built-in camber as the case may be.

For the calculation of the trim state the attached axes are most conveniently taken so that the
x-axis is tangential to the wing mean surface at the trailing edge; the (v, y) planc then defines the
mean surface of the uncambered reference configuration. The overall incidence of the acroplane
is the incidence of the trailing-edge section for this choice of axis orientation.

The aeroplane is taken to have a built-in longitudinal camber {*(x*) which leads to the

acrodynamic loading [*(x*): the total aerodynamic load is thus
dar,, ag*
L) = B - 7 g | (w;* - .;1;_*)] 41, 1)
and if [;* is also calculated on the basis of Slender-Wing Theory then
do* d di*
*a¥) — [ %2 - *2 % _ 21
hHeh) = m dx* (s dx*) T d [s (wl dx*)]' (+1,2)

Assuming the local incidence to be everywhere small, the cquations of equilibrium are {Part I,
equations (2.2, 1)}
Mig* + Zp* = 0

OF =0

(4.1, 32)

Mg *x % — (4.1, 3b)
1

L¥(x*) - fo ¢ *fo(x¥, §%) {z,%(€) + m¥(E*)g ¥} dé* = 0 (4.1, 3¢)

where

41,4

2 *(¢¥) =

is the total acrodynamic loading.

— L¥(&¥%) - Py*5(¢%)
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The expanded forms of these equations are:

R I RAAARNE R

W — ms*? . w* — Cp/w* — f l L*dx* — P* =0 (4.1, 5a)
e
Wyka* — o f: Fd* o * — J'l ‘js; {*ds* — j I*e*d* = 0 (4.1, 5b)
Cl*(x*) f fo(x*, £%) {— - w*+ 7 JZ”“ (‘*2 (ffgl*) + .
+ IH(E%) + PRS(E%) — w,*f,,,(g*)} de* = 0 (4.1, 5¢)
where

Wi* = M¥*g* = pmXg,* = pw,*

As with the deviant equations of motion these equations of equilibrium are replaced by a finite
set of algebraic equations in the unknowns P*, w,* and the vector {{*}; using the same set of
collocation points: as a consequence some of the resulting matrices are identical to those already

S [ AARAI T

derived and where this is the case the same symbol is employed. The resulting inhomogencous, o
) algebraic equations of equilibriur are: ::t
r b22 1 {0}' i 2()1.* 1 b20 :E

by, 0 {c's Py = W -t + bay 4.1, 6)

O oo (19425

r

Q (o ~m | |

T A

- :'{

where {fg,} is the first column of [f;] and -

L[] 2

{k} = - [f(:'] {fm} (4'1, 7) L'

I L. Jp r

b20 = 0 ::-

by = — {c}'s {{*% 4.1, 8) .;-.'_

Bl = ~ [ -

when /;* is calculated from Slender-Wing Theory {equation (4.1, 2)}. It should be noted that the ~

expressions (4.1, 8) apply only for attached axes which are tangential to the wing at the trailing :::-

edge: the fact that b, is zero for these axes for example is merely reflected in the particular meaning <

given to overall incidence w¥*. Attached axes could equally well be chosen so that the x-axis joined -~

the trailing edge to the wing apex for the fixed camber shape {;*. =
i

o

4.2. Solution of the Trim Equations for Level Flight. \:

Since interest is fixed in high-speed-flight conditions it is conienient, with close approximation,, ::2

to replace W,* by the lift coefficient C,’. 2

. Equation 4.1, 6 shows that the trim-state solution is the sum of two parts: -

(1) the trim state of an uncambered acroplane, l:!

(2) the equilibrium state of a weightless, cambered aeroplane. :::

It is convenient to retain this division of the complete solution and for this purpose the suffices Z}:

# and ¢ are used to refer to solutions 1 and 2 above respectively. :
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The distance of the aerodynamic centre of the rigid aeroplane from the trailing edge appears
naturally as a parameter in the trim solution When C},)" is neglected the coeflicient by, is the lift
of the rigid aeroplane per unit angle of attack {equations (3.1, 12)}] while by, is the (aerodynamic)
moment about the trailing edge per unit angle of attack: thus if we define £* as the distance of the
aerodynamic centre of the rigid acroplane from the trailing edge then

= o*
b32 = —-X bzz-

‘The quantity x,* — &* will be recognised as the c.g. margin of the aeroplane.
Rearranging the force and moment equations of the set (4.1, 6) {and using the first of equations
(4.1, 8)} we have

* ok
P *x

Cr’ (F* -, *) + bao — {e}'3 {{*h (4.2, 1a)
Cra®g* _ {c} 3

wl* = puy
bop* bzzx* bap*

% (T%h (4.2, 1b)

and substituting in the last » equations of (4.1, 6),

Cyy {fao} — . {b}2
P e e G R
- Cu [ (9 + S5) + oo (25 1) ] +
¥ [({b}" + 0 ﬁ?&) = Vool %] (42,2)

The calculation of {{*}, from (4.2, 2) involves simply the solution of # simultaneous equations:
the left-hand-side matrix depends only on the stiffness and aerodynamic characteristics of the
acroplane. Substitution of the solution {{*}, in equation (4.2, 1b) then gives w,* and thence P,* is
obtained from equation (4.2, 1a).

At low speeds the left-hand side is effectively (Cp,"/e,*)] so that the part solutions {{*)
{4*}, tend to

}u and

(0% owspeca = [ ({k} + {b}“ ) + {a) (_ - 1)] 42, 3)

.and

(hmwonaa = g | (o + B - 25) = o 2], +2,4

Thus at low speeds (P,*),&* is effectively that for a rigid aeroplane with the constant camber shape
{0*}u 1ow speca While (P*)5* is effectively that for a rigid aeroplane with the total camber shape
{{¥0 + {T* 10w speca ({G*}, is inversely proportional to C;). Equation (4.2, 2) can now be written
in the alternative form

Cry Cr
[ 1)) 0= 5 (o W) (+2,5)
5
where
{fenh = 5 B
(Kl =|[d- —"— s (+2,6)
The expression in the bracket on the right-hand side of equation (4.2, 5) is constant.
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Finally, substituting the expre:sions (4.1, 8) in equation (4.2, 4) it is seen that

1
= 7% (O’ {erowapecd) = [KHL,. (+2,7)

4.3. Behaviour of the Trim Solution.

The following is a brief discussion of the typical behaviour of the trim solution for the slender
configuration with variation in speed. This behaviour is most clearly illustrated by a consideration
of the trim curve of the aeroplane, that is, the curve of control coefficient, P,*, against lift coeflicient,
Cry

A quite general picture of the probable behaviour of the trim state for the slender configuration
can be deduced by consideration of equation (4.2, 5). It may be shown for example that the shape
of the trim curve at high speed is determined largely by the low-speed camber shapes {{*}, o\ specd
and {{*}; 0w speca - This conclusion appears in Ref. 21 wherein a full discussion of the trim state is
undertaken together with the connection between the shape of the trim curve and the static stability
of the aeroplane. Ref. 21 also deals with the application of the usual ideas of manoeuvre theory!® to
the slender configuration, normally embodied in the concept of ‘elevator angle per g’.

The control coefficient Py* (proportional to elevator angle), incidence #* and displacement
{{*}, become indefinitely large for zeros of the determinant

C ’
-e_r’gu[K]l.

Thus the speed, V. which gives the first zero {i.e. (C; )i} Of this determinant represents a
theoretical maximum for a possible trimmed state of the aeroplane: from a practical point of view
P*, w* and {{*}; will become large as this speed is approached: Hancock!s has termed this the
Maximum Trim Speed. Since linear aerodynamic theory is being used coupled with the assumption
of small relative deformation such effects need to be suitably interpreted: the numerical example
of Section 6 shows that deformations remain quite small up to near the Maximum Trim Speed
although the effect on control coefficient is considerable.

Clearly
(CLI')min _ EIr

e* B PV 1 max)t!

is the largest (dominant) eigenvalue of the matrix [K]. The Maximum Trim Speed depends only
on the aerodynamic and stiffness properties of the acroplane and not on the weight distribution.
A variation in stiffness LI, is indistinguishable in this context from a variation in pl’% 'T'he
eigenvalue itself depends only on the relative distributions of stiffness and local acrodynamic loading.

Let V be the (lowest) speed for limiting static stability of the aeroplane, then (Appendix I) at
this speed the slope of the trim curve, dP*[dC/,’, is zero. If Vi < V. then (Appendix I) the slope
of the trim curve suffers a change in sign between some low speed and the Maximum Trim Speed
while if V, > V.« there is no such change in sign.

Some typical trim curves for an acroplane without built-in camber are shown in Fig. 3. Curve 1
consists of the Cj-axis and the two branches of the Maximum-Trim-Speed line: it will occur in
the very particular case when the local weight is exactly balanced by the local acrodynamic loading
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-,}'_:2.‘_- of the rigid aeroplane, that is, — {k} = {b}s/byy and x* = &*. If & * = &* but the weight and .
L . . . . . . . . . -
RO aecrody namic loading (due to incidence) do not coincide the trim curve will be as curves 2 depending
_-‘_.:-{.i on the sign of {¢}’; [{,*]. In the usual case {k} and [b},/b,, will differ and for an aeroplane which is "
s statically stable at low speed x* > &* The basic trim curve of the rigid acroplanc is a straight '.-
Y line of slope — (x,* —&*) passing through the origin C;’ = 0, P* = 0: such a line is shown in
RS = . . . . . i
o Fig. 3. Generally speaking the trim curve for the flexible aeroplane will be like curve 3 or 4, the N
AN ’ 5
R shape of these curves being determined primarily by the ‘natural’, low-speed camber shape, N
AN . Lo .
N e {0 1ow speca- While these curves are probably typical it cannot be asserted that a trim curve
] . . . .. v
VLl cannot cross or re-cross the corresponding rigid-acroplane trim curve (Ref. 21). ‘I'rim curve 3 -
i indicates that static instability occurs before the Maximum Trim Speed. r.
J"‘.~ )> |_‘
PN 5. Allowance for Spanwise Flexibility. .
- Tt -
AR When spanwise flexibility is to be allowed for, the matrix of influence coefficients refers to an ;"
-yt . . . T . . .
ordered grid of collocation points distributed over the wing surface. Similarly, the mass and i’
.

aerodynamic loadings are functions of position in a plane. A consistent integrating scheme for

integrals applying over the wing planform is required to replace that applying only along the root :,
chord of the wing. o~

When Slender-Wing Theory is used then the pressure loading over any spanwise section is ;:‘
dependent only on the (spanwise) variation of dow nwash over that section. When the ‘low-frequency’ =

-

_': ) form of Slender-Wing Theory is adopted the determination of the pressure at a collocation point -
).’._ | in terms of the downwash is straightforward. Thus as in Refs. 18 and 19 the velocity potential is o
-,':3‘.\- expressed, on the wing or wing-body combination, as a Fourier sine series whose coefficients are :
f}:}: determined by definite spanwise integrals of the downwash. These coefficients may thus be expressed

SN

in the form [k}’ {w,} where w,, is the downwash at station 7 and 7 carries only the values pertaining
to stations on that scction. The velocity potential and hence the pressure at any point in the

1T Y,

ot | cross-section is given by -
4}‘3} {p} = [a] {w} -
iy for a single spanwise section. .
"' .'l‘v . . . . 13 . . . . . -

3 Finally the matrix of aerodynamic influence coefficients consists essentially of a partitioned matrix 2

whose matrix elements (of different urder) lie only along the diagonal: each ‘clement matrix’ refers

-

- . \ . . v . - .

. :n,-‘_] to one spanwise section. The downwash w,, at any point is then expressed in terms of w*, ¢* and <
;:j;’.g {{*} as in equation (2.4, 2). :3
’\-4,;:.; In carrying out the spanwisc integrations it is more important that the scheme of numerical >
roars R

integration used be dictated by aerodynamic rather than structural considerations.

m.
i

-~

6. A Numerical Example.
6.1. Introduction.

et cacairey
g 'r. ‘j .r

(.‘ LY

The following numerical example illustrates the application of the general analysis for the

’ v \‘ ‘ . . . . . ..
s Fe slender configuration to a specific case and the numerical results obtained serve to illustrate some "

- . v . .

R of the conclusions already drawn concerning the behaviour of this type of acroplane. No attempt %
N ) has been made to choose stiffness and mass distributions which are likely to be met in practice but .
v 170 N . . . . .
ety the overall stiffness, mass and weight parameters have been given values which are probably typical y
:‘ﬁ:z.{; for a possible supersonic transport. N
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The configuration is chosen to be a delta wing; the stiffness distribution varics directly with the o
Iccal span and is therefore lincar. Two mass distributions having the same total mass and c.g. SN
" . . . . \ b
position but which give very different low-speed camber shapes are assumed. Ty
More realistic configurations will differ from this in having higher stiffness over the central ;';
parts of the wing and less stiffness at the trailing edge. At the apexs there will, in a practical case, be a e
nose extension having a not inconsiderable mass and some stiffness. The gencral mass distribution .
is likely to resemble the stiffness distribution being somew hat concentrated in the central part of =
the wing. All these points are however incidental to the prescntation and illustration of the general
; analysis for the slender configuration and belong properly to an extended design study of this ﬁ
v ) type of aeroplane. e
-:: The calculations are carried out for a fixed altitude of 40,000 ft. at which height the cruising :gﬁ
‘;_ Mach number would be expected to be close to 2. $ :}
: ::' :‘\f‘
- 6.2. General Specification. E'%‘-
1.
, The reference cross-section is taken to be at the wing trailing edge. The stiffness distribution t};\
%:: EI(x¥) is taken as ":
&N LI(x*) = EI(1-x% (6.2, 1) e
E N
o The two mass distributions, referred to as (A) and (B) respectively, are taken as N
» o
m* E:i
m*(x¥*) = ~5 (2—a*—a*2), (A) (6.2, 2a) e
e
NS
and e
m* ~ o
m*(a¥*) = —— (1 +9a% — 25x%2 4 20x%3 — S5y*4) (B) (6.2, 2b) NS
2 I;‘-.*I‘
giving a total mass M* = (7/12)m* or {equation (3.1, 7)} p = 7/12. 4!
. . A "i“‘
The centre of mass of both distributions (6.2, 2) is at x,* = 5/14 while the acrodynamic centre M.y
\ due to incidence for a delta wing is at #* = 1/3 so that c.g. margin = (x,*—-%%) = 0-0238 . .. e
The weight/stiffness parameter e* = WI2[EI, is taken to be unity: this value gives static t}:
deflections of the wing due to loads of the order of the weight of the wing of order 1/20. The o
‘) stiffness parameter ¢,* for ¢* = 1 is then %!
":i: :"::'
ol ok = pl2t 1 o
J 3 r - ‘—"—"" ="~ 7" \'-‘l
~;£ EIr CL ;._-_-
e . . . 3o
At The relative mass parameter M* = M/pl is chosen to be 3+ U at 40,000 ft (about 0-9 at sea level). ,:_:
e The wing loading is also, in effect, fixed by the choice of M* since X )
% - N
At . ) W 4Mg it
Y wing loading = — = —== = 4gM*pl o
y"’" g g srl 12 g p ‘:}\t?
-, ‘H ~
_';.: so that, at 40,000 ft, wing loading x 0-27/. While an actual specification of / is not necessary for a o
o2 solution of the non-dimensional equations of motion and equilibrium it will be convenient to choose 5'
a typical value for /; this is done by fixing on a wing loading of about 55 Ib/ft* giving [ = 200 ft. L
7 The cruising lift coefficient (based on wing area) at 40,000 ft and Mach 2 is then 0-05. D
- The foregoing specification is summarised in Table 1 together with a diagram showing the two :‘_
:::-; mass distributions. :_.:.:-
ith O
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6.3. Numerical Integration.

The number of collocation points used is seven, distributed evenly along the wing root chord with
the end points at trailing edge and wing apex. The numerical integration formula used is Weddle's
Rule giving the weighting matrix

20 1

for integration with respect to &v*.

6.4. The Influence Coefficients.

For the simple stiffness variation of equation (6.2, 1) the cantilever influence function for the
wing ‘built-in’ at the trailing edge is simply

%2

falo®, £ = (1= {(* = 1) In (1=a%) = % 4 o5, % < 85

= (1=a®){£*21) In (1 - £%) — &%) + ;_ & < at, (6.4, 1)

An evaluation of these expressions gives the matrix of influence coefficients referred to the
collocation points; these are given in Table 2.
The unrestrained influence function for attached axes at the trailing edge is given, through an
application of equation (2.3, 2), as
g%

fG(x*’ g*)lnttachod axes — (1 - f*) {(x*— 1) In (1 _x*) - x*} + "'2— -

2
— T (%= 25%) + g% (64 260 =200}, 4% < ¢

= (1-s{(E* -1 In (1- %) — 84} + £ -

X

- 1; (6% + 2(£% = 1)a* + (1= 28%)0%2), a* > £*, (6.4, 2)

The matrix of unrestrained influence coeflicients referred to attached axes at the trailing edge is
given in Table 3.

The unrestrained influence function for mean axes at the trailing edge is given through an
application of equation (2.4, 12) of Part I; there is no advantage in giving the analytical expressions
explicitly. The matrix of unrestrained influence cucflicients referred to mean axes at the trailing
edge is given in Table 4.

The simple stiffness variation chosen has allowed the analytical determination of the influence
functions but ir: the general case the matrices of influence coefficients will be the vutcome of numerical
integrations. How ever, the general appearance of the matrices of influence coefficients will always be
similar to those matrices given as Tables 2, 3 and 4.

The derivatives of f(x*, £*) {equations (2.3, 3), (2.3, 4) and (2.3, 5)] are also simply determined;
these matrices are not given here.
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0.5. The Deviant Equations of Motion.

Little comment is required on the particular form taken by equations (3.1, 11) and (3.1, 12) for
this numerical example.
However, three points require brief mention. First, the drag polar is taken as

R Rl J
. -

1
Cp = 0:029 4 - C,: 6.5, 1) N
giving A
aCp 2
3 Cu ..

In evaluating by, {equations (3.1, 12)] the contribution from Cj, is neglected; this gives a maximum E

error in by at Cp = 04 of 59, N

Secondly, since for the delta wing i

k2 o

(&‘% - — Zsr*(l - f)X) !

Nt A dg* i‘.

i\ I then {equations (3.1, 12)} .

el 1 5

Nl Bn o U [ [] 21—y 7

,‘:\«.j n v
N}

But by the definition of the unrestrained influence function used (Scction 2.4.4 of Part I)

a

- O
@,

o [t e ea-gnae = 0 x
R _ ’ -
.::\.}1; so that, for these particular circumstances, {6}, = 0. _:
RN Thirdly, at the wing apex the mass, weight and acrodynamic loading are always zero. The result ,‘:
is that the apex point does not constitute an independent collocation point although it is of ¥
‘l-.{'é-. importance when carrying out the nuinerical integrations. Thus the displacement of the apex point .ﬁ
«t&q {s* may be completely determined in terms of the remaining (n—1) displacements and the r
.’-:‘, variables ¥, w* and 0. In'effcct the last column of the deviant equations of motion (3.1, 11) consists .h
e of zeros except for the diagonal term which is simply Cp,’/e*. The last row and column may be ,"'?
omitted and *he remaining set of equations solved; the last row then gives {;* in terms of the f
£ remaining variables. This circumstance is a result of the unreal conditions existing at the wing apex o
L in this idealised example. .
w ) ‘o
:‘%& 6.6. The Equations of Equilibrium. ’?
Al The remarks made in the previous paragraph concerning {b}, and the role of the apex station ‘.‘
Y alsu apply to the equativus of equilibrium (4.1, 6). The solution of five simultaneous equations and =
;:. )‘1 ’ substitution in the sixth gives {{*};; w,* and P* are then found from equations (4.2, 1). Thesc o
'.‘-,*-;{' calculations are casily performed on a desk calcuiator. i
o :j-
o 6.7. Solution of the Trim State. :}
P 6.7.1. Maximum trim speed.—'I'he Maximum "I'rim Specd was found by determining the ,_._F
y?,':‘ dominant eigenvalue and cigenvector of the matrix [K] {equation (4.2, 6)] by simple matrix iteration ::::
f;:.‘::: performed on a desk calculator. This gave :::
W El, 11 &
oo PVl ™ c* 7 164 g
o] 2 *
3
N :
- N
] -
®
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When the connectinn between C,” and ¢,* is made by the choice of ¢,* (1'able 1) then .
((.‘L')llllll = 124_ i

or B
(Cl‘)min = 0-049. ‘

Thus the Maximum "I'rim Speed is fractionally abuve the nominal cruising speed of this particulas .
aeroplane. -
The corresponding cigenyector (relative to attached axes which are tangential to the trailing edge) i

is plotted in Fig 4 normalised to unit amplitude at the apex station. 'The a-aais is rotated through :

AP

the appropriate angle w,* to give the shape of the acroplane telative to o horizontal velocity vector.

P

>

6.7.2. Trim curves in level flight.—For each muss distribution the trim curve P* ~ C;, for
level flight is plotted in Fig. 5. It is scen that for mass distribution .\ the acroplane is statically
unstable at speeds greater than that corresponding t¢ C; ~ 0-1.

"The deformed shapes of the acroplane at a series of speeds arc showu in Figs. 6a and 6b wherein
the deformation is plottec relative to the ‘tangential” attached axes while in Fig. 7 curves are plotted
of incidence w,* against C;. The order of magnitude of the relative Jdeformation even at speeds
approaching the maximum trim speed fully justifies the use of small-deflection theory.

N

6 S. Solution of the Deviant Equations of Motion.

6.8.1. The rigid aeroplane.—As a basis of comparison the deviant motion of the idealised
rigid aeroplane appropriate to mass distribution .\ was computed. The routs of the resultant Guartic
characteristic equation typically rcpresenting the short-period ond phuguid motions are represented
by dotted curves in Figs. 9 and 10. The idealised rigid acroplane appropriate to mass distribution. B
differs only in the value of the radius of gyration and sin.c this difference is small (Table 1) the
roots are little different from those for mass distribution \: the frequency of the short-period
motion may be expected to be increased by the factor k,, [k, that is, by about 8°,,.

ST VP, vy VMY (AN v Y N W rglNE K K U N 8L T, gy

6.8.2. The normal modes of free vibration.—'I'he normal, free (in-zacuo) vibration modes
were computed from equation (3.2, 9) which uses the matrix of influcuce cocfficients referred to
mean axes. Only the first two modes and first three frequencies are considered to be of acceptable
accuracy. "T'he normal modes are plotted in Figs. 8a and 8b for cach niass distribution together wilh
the corresponding va'ucs of the non-dimensional mass-stiffness-frequercy parameter % {equation
(3.2, 8)]: the true frequencies are also given assuming a reference length of 20U, other parameters
being as given in Table 1 At 40,000 ft the still-air natural frequencics arc of the order of 987, of
these frequencies.

A

fL.t " rtvERt

e s

6.8.3. The flexible aeroplane.—T'he complete deviant equations of motion when reduced
to an equivalent first-order system as detailed in Section 3.2, yield a matrix equation of order
14 x 14. The characteristic roots wcre obtained Ly the application of @ matrix iterative programme
to the matrix (I"+BP)~1d of equation (3.2, 5). The complete programme received the matrices
¢ and ¥ as data.

These calculations were performed for a series of alues of C,, the first ¢ight roots only being
found: higher roots would be of doubtful valuc with the stuall number of collucation points einployed.
The roets computed thus included those roots cortesponding to the sceond normal mode. The
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results are presented in Figs. 9 to 12 as curves of the inverse of (real) time to half {or double) amplitude ~
and curves of frequency in cycles per (real) second plotted against C;. The roots are easily <
identifiable as stemming from either the rigid-acroplane roots or the free-vibration motion and these r
figures are titled in this sense. This type of root label is uscd for convenience in presentation only ;:
and should not be taken to imply that the mode of motion associated with any particular root or o
root-pair remains similar in character at all specds. N
. . . . . . . . . . A
Since the model is not particularly representative there is little point in refining the calculation e

. 3 . "‘l

by employing more collocation points. e
=3

6.8.4. Trim curves in shallow pull-out.—The rclation of the manoeuvre theory of Gates =

and Lyon to the possible dynamic behaviour of the short-period motion is discussed in Ref. 21. The
curve of control coefficient per g (equivalent to ‘clevator angle per g°) against C, is easily deduced e
from the equations of equilibrium for a shallow pull-out with constant centripetal acceleration when e
the variation in the direction of the gravity vector relative to the body axes is ignored. These equations .
are identical to equations (4.1, 6) except that the column L
..‘:\

1 ‘:j

1 N

o | = 57 bss el

nCp, M* et

7

) =

[‘4*{ }3 ‘:-.

-

is added to the right-hand side. Thus for this ‘trim’ state we may write
-,

e

P* = (Py*), + (P*). + n(Py*), o~

-

: , N (2

where 7 is the centripetal acceleration. Since, at constant forward speed, :'":
\:’,‘

dP1 — (P¥) X

dil 1 /n :.}

w

this last is effectively the ‘elevator angle per g’ of Manoeuvre Theory. Vanishing of the ‘elevator 2o
angle per g’ indicates limiting static stability of the d..viant equations of motion when the change in "3{
forward speed is suppressed but it is precisely when this occurs that the exclusion of this variable _:Q
(and with it the attitude angle 0) is inadmissible. The connection between ‘elevator angle per g’ ol
and dynamic stability needs to be established for the slender configuration by the investigation of K
many numerical examples. N
The curve of ‘control coefficient per g’ ugainst €, for the particular acroplane considered here 1s b2
given in Fig. 13 (for 40,000 ft). o
. . . \ S

7. Discussion and Conclusions.
This discussion is concerned more with the application of the general method presented in Part 11 *7*'
for assessing the dynamic behaviour of the slender configuration than with the particular numerical =
results found in Section 6. .
Although the scalars and matrices appearing in the equa.ions of motion were obtained on a desk o
calculator for the example of Section 6 it will be clear that this stage of the calculation could readily T
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be programmed for a digital computer, the only operations inmvolved being scalar and matrix
multiplications. The basic data would then consist of:

(1) a set of weighting numbers relating to the collocation points;

(2) the values of bending stiffness, £1, at the collocation points;

(3) the values of semi-span and its derivatives at the collocation points;
(4) the values of mass per unit length at the collocation points;

(5) the relevant non-dimensional scale parameters;

(6) distribution of built-in camber, if any.

The trim problem being readily amenable to programming then the solution of this and the deviarnd
motion become available from one simple set of basic data.

The drawbacks of the method are, first, the neglect of spanwise flexibility and, secondly, the
use of Slender-Wing Theory. On the first count the main defence is one of easc of application and
simplicity. It was indicated in Section 5 how an allowance could be made for spanwise flexibility
and although this is straightforward the directness of equations (2.3, 1) etc. is lost. Similarly the
use of Slender-Wing Theory is justified by its simplicity compared to uther low-aspect-ratio theories
for unsteady flow. Also, in the region of interest the main flow is supersonic so that the main
drawback of this wing theory that it does not satisfy the Kutta condition in subsonic flow is not
serious. Furthermore the use of any other unsteady-wing theory leads to the usual restriction to
simple harmonic motion.

A third criticism may be directed at the large number of degrees of freedom required to obtain
reasonable accuracy up to say the third or fourth pair of roots of the deviant equations of motion
compared with the use of normal modes as co-ordinate functions. This is, of course, true but it must
be remembered that the calculation of the normal modes will have involved in general the use of
three to four times the number of degrees of freedom as the number of modes obtained.

Fourthly there is the representation of a flap control by an unspecificd concentrated force applied
in the immediate region of the trailing edge. This defect is easily overcome by replacing this force
by that derived from a flap control using Slender-Wing Theory and the introduction of a finite
stiffness connection to the wing proper.

The author considers the method as presented to be suitable to the assessment of the effects of
flexibility on the uverall motion of a slender configuration in the vital carly design stage when the
structure is largely unknown in detail. At this stage the application of an involved analysis is
impossible both for lack of information and for lack of time. The ability to more or less arbitrarily
change the basic data outlined at the beginning of this section quickly and easily is the paramount
consideration.

For the very simple example considered interest in the numerical results lies in the change in
behaviour of the perturbed motion with change in mass distribution. In particular, how far does
the low-speed camber shape reflect the probable dynamic behaviour of the aeroplane?

Mass distribution A gives a trim camber shape which is always convex upward (Fig. 6a) and the
trim curve (Fig. 5) indicates a static instability at C, x~ 0-1: the transition from a pair of complex
roots to a real pair is extremely rapid and in the region 0-10 < C;, < 0-125 the iteration of these roots
is very slowly convergent. Normally a static instability is accepted with sume equanimity but in this

case the time to double amplitude is down to 5 sec by C;, & 0-06 (Fig. 9a) and is rapidly decreasing
42
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with further decrease in C,. 'I'he modes associated with the ‘phugoid’ roots alter in character
throughout the speed range and at high speed both the stable and unstable modes show increased
contributions from change in incidence and elastic deformation; the mode associated with the
‘short-period’ roots does not change in character.

Mass distribution B gives trim camber shapes which are (largely) concave upward (Fig. 6b) and
the trim curve (Fig. 5) indicates no static instability. The curve of control cocfficient per g (Fig. 13)
however shows first a reduction and then a change in sign of P, * at C;, > 0-06: this would indicate
a static instability of the equations of motion with change in forward speed suppressed. The full
equations of motion cannot show an initial static instability with decreasc of C;, and any instability
must be of a dynamic nature. For this mass distribution the modes associated with both the
‘phugoid’ and ‘short-period’ roots change in character as speed is increased, the former hay ing
increased contributions from chunge in incidence and clastic deformation, the latter having
increased contributions from clastic deformation only. The ‘short-period’ frequency drops to zero
at almost exactly that value of C;, for which the control coefficient per g is zero (Figs. 10a and 13)
and subsequently this motion becomes a pair of subsidences. The ‘phugoid’ frequency (Fig. 9b)
increases rapidly for speeds greater than that for C;, ~ 0-08 and a dynamic instability appears
in this mode at C;, x 0-065 giving roughly the same ordcr of time to double amplitude as for mass
distribution A.

‘Two general points should be mentioned. First, any change in the low-speed camber shape (or
indeed the trim camber shape at any speed) depends on the difference betw een the mass distribution
and the steady aerodynamic loading and hence any uncertainty in the steady acrodynamic loading
will be reflected in the dynamic behaviour of the acroplane: this leaves aside the question of the
accuracy of the unsteady aerodynamic loading. An accurate assessment of the trim state and dynamic
behaviour for this type of acroplane places a heavy demand on the acrodynamic theory and in this
respect the position, at present, is far from satisfactory. An additional point of importance for the
slender aeroplane is the fact that since weight and aerodynamic loading are reacted locally then
strength considerations cannot be expected to yield the same order of stiffness margins as may he
expected from a conventional acroplane configuration.

‘The second point concerns the representation of the aeroplanc by its normal-modes ecither for
static or dynamic calculations. The change in first normal-mode frequency for the two mass
distributions is not large nor is the first normal mode shape very different (Figs. 8a and 8b). The
result is that the equations of motion for these two cases in terms of the overail degrecs of freedom
plus one normal mode may not be adequate to reflect the large differences in the dynamic behaviour
of the aeroplane. It is clear that a representation in terms of small translation, small rotation and
first normal mode will certainly be inadequate to describe the dynamic behaviour. While the use
of the first normal mode in estimating the trim curse might be adequate for mass distribution A the
presence of the reflexed region in the trim camber shape for mass distribution B (Fig. 6b) means
that this representation would be inadequate in this case.

The question of the response of the aeroplane to controls or gusts has not been discussed. When
the equations of motion are linearised for these cases the deviant equations of motion simply become
an inhomogencous set and the usual methods of solution are available. While the vanishing of the
control coefficient per g is not necessarily a serious stability consideration it probably indicates
undesirable response characteristics: this example, since it docs not include response calculations,
cannot shed light on this point.
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£V, {3, [} []p indicate row, column, square and diagonal matrices respectively

:
L
NOTATION
PART I
p Air density :
14 Airspeed !
l Reference length ::
g Mass per unit volume .
M Total mass :
}
o b1y oy D3 Euler angles :
R :
%’_‘{.: r Position vector :
\1.‘4 0
';".’:‘;';:*3 r’ Displacement vector :
o ;
DA . - -‘
b v Velocity. of origin of body axes i
SAP Q Angular velocity of body axes .
1 .
‘?}% g Gravitational acceleration vector .
P, . :
{.I}\“: P Inertia tensor .
Lo P’ Change in inertia tensor due to displacement !
i—:&: F Overall force .
Lad . ! N
.,}‘{.'s;':{ L Overall moment :
o \‘.’ :
> s Y Surface traction :
AL E
] Stress tensor ]
4 . -
g v Strain tensor {
“,‘ N ]
:,f ot w T'ransverse displacement of slender beam >
gind ’ .
P P Loading on slender beam !
F AL i
G(x, &) Influence function for slender beam A
i
3 ;
3 Denotes rate of change of vector relative to moving axes .
-
d Lo N
7 Denotes rate of change of vector relative to inertial axes D
’
Subscripts -
0 Reference state .
1 Equilibrium state =
{
g Fixed axis system \
‘-
M Moving axis system .
!
2

o
|4 ko !
i A
ADAY
= "
o .
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PART II (in addition to the Notation of Part I)

/

4
I(x)
Wy
s(x)
m(x)

x

g(x)

Cr, Gy
CL ’ Cl)

Subscripts

TELVAYLR Y
FEA TR

™ AL L"L

NOTATION—contined

Reference length—length of slender configuration

Gravitational acceleration

Aerodynamic loading per unit root-chord length \ ‘
Fluid downwash velocity

Complex frequency parameter

Local semi-span

Mass per unit lengtl

Total mass of aeroplane

Total weight of aeroplane

Position »f centre ot mass

Position of acrodyinamic centre due to incidence
Bending deflection

Lift, drag, etc. coefficients based on 2

Lift, drag, etc. coefficients based on wing area

Asterisk denotes

Reference section for definition of overall parameters
Trim solution for uncambered aeroplane
Trim solution for weightless, cambered aeroplane

Trim solution for shallow pull-out

Weighting (or integrating) matrix
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corresponding non-dimensional quantity
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APPENDIX 1

Neighbouring States of Equilibrium—Static Stability
Consider the neighbouring states of equilibrium w,*, Py*, {{*}, appropriate to C;,’ and w,¥, i
Py¥, {{*}, appropriate to C,": when the states 1 and 2 arc close then we write :
Dk = wp* — w*; AP* = Py¥ = Pi*; (ALY = {1, - {*h I
and :
AC, = Cpy' - Cr 3
)

where the increments Aw* ctc. are assumed to be small. Since change in C, represents solely a
change in speed AV = V, — V| then

W 14 20,

(B ) (1 +

e

’ 2C,y
)| e T e
1 1

AC, = . — = I A . AI,I 4

L p VAR ™ pV 2R v, v ( ) .

Writing equations (4.1, 6) for states 2 and 1 and subtracting we obtain, on using the relation !
(AL 1), 5‘
l'b22 1 {0y Aw*'l boy .

by O {c}(’f apry_ACL| by (AL 2) :

~ 2

L !

i

’

where the suffix 1 on the matrices indicates that they are to be evaluated in the state 1. It should be

noted, in this derivation, that {equations (3.1, 12) and (4.1, 7)} ¢
* i
26,1 (9 + 50 < (. *
L1 0¥ 11 ]
r \ [
The slope of the curve P* ~ C;’ for C;’ = Cy,’ is given by
(dP* . (AP* ‘
——,) = le (——-—,) K
dCL 1 JCy -0 ACL 1 »
(b b o !
I ’
' by by {c)s i .
Cry .
L@ e (e ) ;
- 5 .
= e (AL 3) .
2C1" 1 by, 1 oy ! ’ ;
e ,
:;-:’_:'.‘ by, 0 {c}'s } .
W c,. §
bt ' A | .
o O Uar) ([+ 24 1)) :
»’3:'-:.:5‘ ! e i .
3D .
ﬁ’-“ The numerator of this expression is proportional to the determinant of the coefficients of equation {
X :1 (3.1, 11) which are not associated with the operator D, normally called the static-stability N
:vijn:\* determinant. Since the value of this determinant is the value of the ultimate coefficient in the ':
o X characteristic cquation of equation (3.1, 11) then this determinant must be positive for static E
:‘_{x::ﬁ stability. :
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Equation (AI, 3) may be rewritten in the equivalent form ..‘:
lcm I (bzx{b}z bzz{b}l) &';‘

% + [ ] { }3 Y

(dp*) % -4, 1& (AL, 4) ny

dCr/)" T 2C;, by CM 1 , ’ :~

I+ [ = ({fao} = 7~ {0} {C} 8 T

b22 .'h\_

- Fu

X" ] “'-

where A
‘bzl bs | b

4 . T s

= ! = 2C}," byl * — &%) el

!1’31 bya | “

o~

is the stability determinant for the rigid acroplane. The denominator is seen to bz proportional to o~
the determinant discussed in Section 4.3 having a zero at the Maximum Trim Speed. Since the o
Maximum Trim Speed is a terminal zero of this determinant it is one-signed up to the Maximum .

Trim Speed so that it is clear that for static stability we require

apP*
(azz) <

T
A

ERT AT LN
PRI

The presence of built-in camber plays an important part in the variation of d P*/dC;’ through the
presence of the column {b}, in equation (AI, 4) (see also Ref. 21).
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TABLE 1

General Specification :

Parameter

¥

k

M
kulf

g\

*

Aspect Ratio

c.g.

*
()r

¢y,

Margin i

cruising

Landing Speed

Wing loading

Wing Area
AUW,

cte.
1 /C,.* = Cl,l

6 at 40,000 ft

0-239
0-218
1-0

0-023...

1-0

0-05

125 m.p.h.
55 lb/fe?
10,000 fr2
550,000 1b

Reference Value

3-5 at 40,000 ft

nr¥(xr)

I

Remarks

m* R
=, (2~ xE—02*)

m*
() = (14 9v* = 25x%2.4 205%3 — 54 T)

= 7
=z

Radii of gyration about c.g.

st = (1=

(v, =¥ =7 -3

i Weight-Stiffness Parameter

.M = 2 at 40,000 ft
' CLmax = 140

© Relation between coefficients based on

< pl™I* respectively.

EI
pl7alt

= C}/(1-x%)

(4)

(B)

// Normolised mass distributions
Pl
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TABLE 2
Symmetrical Matrix of Influence Cocfficients for Delta Wing Cantilevered at T ailtng Ldge

0 0 0 0 0 0 0

0-00161219 0-00406753 0-00652287 0-00897921 0-01143355 0-0135888Y

0-01354005 0-02404392 003454780 0-04505168 0-05555556
0-04828679 -07385786 0-09942893 0- 12300000
0-12206803 0- 17214513 0-22222222

RN I TRt 1 AR

(- 25810443 034722222

=

-50000000

TABLE 3

Matrix of Influence Coefficients for Attached Awes at Trailing Edge of Delta Wing

0 0 0 0 0 0 0
0-0070730 —0-0010248 —0-0006913 —0-0003577 —0-0000241 0-0003094 0-0006430

LW AL A

)
i

0-0514403 —0-0073356 —0-0120618 —0-0064743 —0-0008869 0-0047006 0-0102881

N

0-1562500 —0-0042157 —0-0546996 —0-0379654 —0-0079491 0-0220671 0-0520833 10 .':

x 10 o~

0-3292181 +0-0211950 —0-1209143 —0-1256189 —0-0413224 0-0616433 0- 1646091 ;

0-5626286 +0-0714685 —0-1978457 —0-2595687 —0-1379023 0-1161952 0-4018776 :

Jh

0-8333333  +0-1388889 —0-2777778 —0-4166667 —0-2777778 0-1388889 0-8333333 =

.

TABLE 4 X

Matriy of Influence Coefficients for Mean Awes at Trailing Edge of Delta Wing ::::

(Mass Distribution A) :‘;ﬁ

1-046366 +0-166566 —0-396318 —0-525533 —0-269922 -+0-220458 +0-308271 —.';

+0-041491  +0-052128 —0-017616 —0-077264 —0-060916 +0-023401 +0-135921 =

—0-590442 —0-115168 +0-254293 +0-313415 +0-139705 —0-138839 —~0-446409

—0-617951 —0-188158 +0-213530 -+0-450351 +-0-278330 —0-171325 —=0-707236 & x 10 * .

+0-036124 —0-038240 —0-063002 +0-025661 --0-153846 -+0-001829 —0-260760 —:

+1-294623  +0-360306 —0-446701 —0-861991 —0-602705 +0-357653 -+ 1-433145 :.'::

+2:926065 -+0-930321 —0-860407 —1-981125 ~1:792212 +0-378439 +5-068922 ] d
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Forces X,Z; aerodynamic loading L(x)

n ] Control force P
N
AN Moment Q
OO g 2 Bending deflection ¥ (x)
o]
S -
-.:.-,."i Fi1G. 1. Typical slender configuration. Tic. 2. Typical slender configuration.

A
X

o
B 4 St B 2

4.
.’l
)

Ayt g pd oAy Ay Sy Ay
L )
o
e

[$4 1 S

A g

1\\’ ¢“ .

}ﬁ'?:' (c ) Y
o L ~
‘1\.: ! = ™
' - -
:.“’13 \

et

L% XM

Ay .
(\ y 3
L \\[ .

N ;
‘\ 'g v‘
P g »
"
2
e v, € v
*5..'1".\ E Lol
b‘_\. - ;"_5, Low~spced camber shape ':
-“'."'C' £ .J‘
>',%:‘;'t.' 5 >
l?,:q“."r' p3 u:‘
o o
o) o
ﬂ;',“" Frc. 3. Trim curves for uncambered acroplane. !
o 5
Y ‘.'
%\x} &
[N
i
Ty ) '
Eﬁ":u
o 52 »
e g
“.: v:" :;.
w -~ ] .
5
Xt -
g p
NLRY e
& L
AR -
ﬁ"ﬂ, -.(1 q.-"n-.\’-.-‘-.\-v“‘q o PR A A N L R . ..
« PR P J"'\ (. AT A L ) :‘ Ve - . ’
kY 1Y '\‘m - ,‘N l‘i ) ,\-‘ \- “\5’,’3 Q&A\_z\'”b\»\ }- * - 11.'3 i ! .




~
Y

. . . 5 - o~ TR G¥a B 8 WS LU E AT AN ZE IR LT N N, I RUNINGY
QNI A SO RLIRAN L S A I EA SIS QIA NS RIA S CIASE IR EHEL RENEAALARIAL AU N AR
)

]
“

-0-693 |

-]0-6
-
X . ~0+5
\‘
\ . ~10-4
\‘ —0.3
\.
. -10:2
Vi \
o ——————— s o =104}
L ] Il 2 1
6 3 2 . ] 0
Collocation point ~1=0:]
-—0.2
d-o3
--04
-1-0.5
-0:6
F16. 4. Configuration at maximum trim sj.eed.
+0-004 \
CL
0 0.05 0.10 0.45 0.20 0.25 0.30
o-ooozsy-ous 0-01875 0.025 ¢ 7 0:05125 0.0373
~° L
\ X |
-0 001 =
/\\\‘ L dist g
I -~
-0 002 o

-0-004

~——
\

=0 005

F16. 5. Level-flight-trim curve.

b e 11 I A
< ‘-"'-\" ."'i }\\‘.'\\:.‘ y
MES 4010

BURYRN :‘
CRENE RS TSN

* S "L

i@

A L s

N e gl ol S i
e

o

i AL

(PR S A

el
S

.
Aty

%

¢;¢’ »

et N3

D T
bl RN

@ IS

1A

AT a, A A
23 e ln s N



B Y A e o e A A R g

Collocation  point

Bending
deflection

&%,

o e 12
S
Q
Ul .
N
(9 14
R B 15

Fie. 6a. Configuration in leve’ “'ght- ~mass distribution A.

Bending
deflection

{* %

PR B, W'}

Collccation point

F16. 6b. Configuration in level flight-——mass distribution B.

54

R S A AR B A P -.-_‘-_v.--'ﬂ‘.I' vq"_\.."'n. L

ARRRS .
Tt R P e

UL I T SR ’
4'.'1'-‘|'..'.‘4'¢':'t‘.d"1
LI A




AN

1AL LR S SR SIS EA SR TR L TA LA RS SACACIAR S CRCOR OO
) 1

.
o T AP Sl

2 .
o ~
3 u
2 3
LY
! "
& -
g I'd
o ’p
o
v g
o
£ g
»

20 025 030 0-35

C

F16. 7. Incidence in level flight.

Y, RTINS A T

=
' J

TOAS

g™

-“.. e e

T

S 33 -
'y ~
24
3 -,:

A\

55

RN P X

“ ll“

-

L

1.3, T - e - ane i m oMol . e iemte 4 .. - . - .
N AL O e T N it NTNTN \\ o 1\ AR e e e L o, w e -_".-' IR P P [ R I L AR
'&;‘\‘}":\."Z%‘z.g,}fz&'{.\g\t h 2:‘! \\:ﬁ{}\c‘htﬂ nlML“(:V:I\ '\.‘:}, TN ',‘-’ . ' o, 2l R LT .'f w e, "!-_'_- . [.'__-i L

i
2
'
-

12 BT

P



N G A e N e L A s A S AR e N
\
4
P
K
»
A
{
™
4
[~
b0 (
A-0:8 .
I/ .

// +1=0:6

——
el . /  -=0:4
’ hY /
/ \

/ / .
/ \ / 1-0:2 o |
S 3N 2 4 2 4
E— £ 0 = by
\ 5 e A
/ R °
\\ / 02 |
N, / g 2
N / =104 = W
h \_f// % a
406 & L
Ive’l :

30 (3 108

3970 1-24 =10
11.79 3.70 .
3 32-36 i0:2

F16. 8a. Normal modes—mass distribution A.

ATHEEY Y e MYttty 8 ARV en, ot RN M A

I/
J-1e0

/ .
/ 0.8 :
;/ 4-0-6 .
/ v
PN / --0+4 K
// \\ ,, 0.2 v
6 s 7 4 .Y VS {
) 7 : Y 1 [ 0
3 \\ 2 Y .
B 7 0-2 .
y Jo.
\\ S :
S’ -~H0-4 "
-10-6 :
/i'r“! d0. .
Mode 20 | fels 0-8 !
Jd1.0

I 4470 -39 .
2 13:77 4-31
3 P IH | 895

Fic. 8b. Normal modes—mass distribution B. .

56

«
3
”
!
.
[
.
L)
"
.
»
’
-
»
.
v
’
1
.
.
'
.
.
.
.

. Vn - - . - - .

v Ve o U U S S R SR ST S - LT L N I N " e e
85 e o i R At i it S T A L R K s P T -
e SR e e e fe M Ta N L we e RN R * e R A I I e N .
~hL'i‘ A r.\-. LA P RERI A oo - LIV o . LA SO A st et Al et L




% % R L LT e O 1 A T ST LA A Tl Al du L WL AL Sal, i Sat, P ity e TP ite e 4 "R R ot AL oSN S Rt B I o A g i
LHESCUXECR EACACR SR TAKS CAXATACAECTLCLL L LA SREAR RIS SAAMARNAS LY vt Ca Uil Vit e At GO S SN A R
t
o)

4

'.l u
s

xR R,
g4

£ "‘l ",
LA,

016

A
o
»
»

*
»

——— Period 160 sec] | ¥
= e Rigid =
see=} P4 ~|aeropione -
7
0:05 o0 015 0.20 0-25 0:30 035

. Period 200sec

Tad
[}

=3

\

.
."'J I} '

e
[ A
A

)

"l'
v s

o
N
f

01 N
'.~.‘
1.~.'

Fic. 9a. ‘Phugoid’ mass distribution A. ke

016

.-

o2

Ty
3

thait
0-08 —

“r

2y

rd
-
SFEL L
".a il“ l.-l

bt

004 + "
- Period 160 sce
/ 1000, s¢c™ ~~ = =|—= — _ _ _| _Rigid
s oeroplane

sec-lg

s {;’ Pid

r
v

o
£~
WA
2.
=]
o
@
<

X
N 025 0:30 o35
46 sec G Period 152 fer

A
felehs

<
=3
-

Il
I

iy

.
hod
=3
®
[}

<

<
L, A'- .

o5

v e

(24

W

25 sec

.

b F?"
"taa

F1G6. 9b. ‘Phugoid’ mass distribution B.

K KL
A » .
. "
N o

-
PR I )

N

~1
T
-

,....,.._
e

{s
rl

»
'}f" A AR Ul Vgl Tl U S 2" ;\J’."‘k'ﬁ-"\hﬂ“qm-ﬁw ".c.’.).-u"{-un’qt"- ‘n_-‘;,- ,rﬂ.‘- L -_-_v_-.‘-.}..(--.-.-‘_'.. T R N -‘-ﬂ".;\/-’:;!

TR " ¥ ) o Wy ooy - "y "v-‘\t e ) o PRI SR ~, - h".‘.h' R SN A P ™ ~
LA )“C"':-\;}.e -J\'\"S::ﬂ“\'*'-":’}‘f N (‘i‘ﬁt&":"‘- e N N N A N Y L LA S LI L E LI, W N8 2 3




;(A:;r;x\ (“i: ( o) Tﬂ.\ .L“(_“v:\r- - y.'.‘ el \‘" (‘1 \'\ L‘T 7‘ ,_?”\'-. e g’-"\“" 'C'L‘;'F‘ “Rh ."F“;‘rq_r.'t'q:“; i ?'*.?'"{7_ J‘\,T’T‘.\"" J\.\ {;{(r:(r‘ -p{j“ _-r MR

0-24

000 p———

L
Q@
=S

-

s\s = - \‘R'Sl

e
S
83

<
e
) s
Frequency ~c/s
-]
(=3
[
T
.
™~
ﬁ
[
/;
1
'
1.
1

" a g l
0-04

t4

o
o,
W oS

0-05 0410 [ H] c 0-20 025 0-30 035
L

AT
tf"? > Aol L
“a.

Fi16. 10a. ‘Short period’ frequency.

¥
hY

P
" "r,'r"r
LA

.

N
y

LI
x

»
LI 5

B L

2:0

48

s

Y]
1
»
N3
~
W
(e}
&

) A

W
£y
/’/
k
fo-

o,
=

08 yvi
om

see~l

.

"

S
\

»,
o
L
-

2 Sy

-~ ¥
«

] ‘
<
rS

Thau \’\\& Mg,
¥
/
/

L 4

005 010 015 020 025 0-30 035
CL

YA
g
4
"n;,v

>
I.")-‘
P2
2
>

X%,
ey
el

Fi1G. 10b.  ‘Short period’ damping.

»

I3

58

St Tt N TS ' AT '. - N.," N "- NG, "' N L 1»"'.;\" R AR L
.. ..._ RN ‘v e gt .J«\f\g.\y ‘J\ \'u '&'" ‘}:“"I”-;'\\‘k:"h’i_ \\\ \ 't. iy X ( iy N '\.‘h "\J‘ < ..‘n-




N T R R ' A Y a R "L . " |
U S R R e

RS, B LA

- —— In=vacuo freguency -

YAGSS dist.

=d

C o LV ATt S s TR Y e e Y

<
©

Frequency —~c/s

<

Suppressed origin

005 010

FF1G. 1

[1H c. 020

la.

‘First normal mode’ frequency.

At et NN T

I 19

-
v/

ST

Rt

E—
24 —————— v
I-‘,‘
.
\\ .
20 - -
\ b
Ed
l‘.
16 i - "_‘.
\ \‘»fo:; iy g
y 12 > \{ <
T, A, v
half U35 - \
08 -
sec~! I~ ) .
“
04 )
Ch A ‘(:
- ¥ ~ L)
:-'. ]
" 0 005 010 o5 o 020 025 0-30 035
.\"’:' L -.-
;:._:2 " F1e. 11b.  ‘First normal mode’ damping. -
T K
b
w:, ':'
3y e
3
L) .u
T
Ji ! |.d.
N 4 ‘
s 59 q
-
oy » (]
h’,:l.:'. \.:
ot >
Wwha Ny
‘~l 'I
‘R‘t_' ol
-4‘,(\.)( W
@ :
Yy "
oy
}."’3 ‘F Ao U B P A S A e Al N B i A T U SR S T T UL O T S TP SO0 VNI P et e tATet tatatate St -‘(, AR -::
R Ty et 3 g o o e e TN s v S o T L Ll T N



:i%-‘&-‘&ra:w:*;wx-‘{f{f{f\".\?ﬂ‘fm‘ﬁ-&}; N D e e L T R D T e Do G TR s o s s s

50 — e '
46—
| .
In-_\_ acuo_trequency’
42 e———

W

Frequency —c/s
[y
[<-2

Mass dist.A

" \
+

/ '

30 X
;

(¥
B
-~

— —

{Supprzsscd origin ’
L 1 1 1 ] [

0 005 0-10 015 0:20 0-25 030 0-35
Co

Fie. 12a. ‘Second normal mode’ frequency.

w
O

v

40
iR
holt

\ Mq

sec-} W
} ~—

24 -
i T

6 ™~

\'\ Mats dist. A !
08 ——— .

0
0-03 0-10 o-15 070 0:25 030 035
cL .
F16. 12b.  *Second normal mode’ damping.

60

B T AT N AT TN T R N e e .‘.f—-,.‘(_—. R R TR L LR S LU RS PRI R
ot S T A e T . A o T
S R L S A A S, }vf;a'f’w:.n N PR




R R R R AEAEEE SAEN ARSI L LIS 2042 AV A R R KR AR SR D

-
~
» Pt S

”~
P

i

crer
[

-.‘
- -
r”':
. N
| 7
\ ?;.
0 005 0.0 015 020 Cv 925 030 0:35 >
. Gouczs 0125 1875 0025 ¢ g os 00375 204375 o
~ -
j l\ D .\.
-0 001—— i —— S J N
| = M, ' ,""-
: \Qs\d’s(_e 1 ,'"‘_\.
-0002 ‘ \ ~ ! i"i
2 oy | e | 3
Q. O,
n ss s 0 \:ﬂqh‘e L -j
-0003 | ; S i
1 o~ |

=0004

4

B

4‘@

0008 o

LA
oy

N

~0008

.

o
&% *r”

Fic. 13. Control coefficient per g.

YRV

Coli gt o
A m

.
a

e

|
=

]

.
R
.'.'}"’z'

.
Fad AR

Lo
-,

]

e

P A A

...“,.
o
AR

61

(88240) Wt. 65/1418 K.5 164 Hw

Sla

o

=

Py
<

‘-

F
L
o
g

'




SO B B A T i R
x &
=%
3
e
5
N\
7
N.u ‘0"L°d ‘orLd
. *spoyjowr paid1nsat 9soy3 jo uoneorydde jo *SpoYIowW PaldINIsaI 93 Jo uonedidde jo
A suoiSo1 oyl AJUIE[> 0) SOAIdS JUDUNEII} PIILISIIUL BY ], “SIIPMIS JISL[O0IE SUOIGDI o3 AJLIE[D 01 SOAIIS JUSWIILAI} PajeIdojul 9y ], "SSIpNIs ONSLRO0IdL
b [euOnUSAUOD woIl Joylo oy uo pue suepdorse pidu Sy jo Azoayl [euOnIULAUOD w1y JaYlo oyl uo pue suvjdorse piSu oyy Jo Krooys
e Anpiqess oy wioxy puey suo o3 uo Sunwwels suejdorot d[gIxoy oY) JO Anpiqess o3 woxy puey suo a3 uo Surwwols sue[dorde a[qIxay Yk JO
L2 Inoraeysq sy3 21ednusoaur 03 pakojdwd £[IULIND SPOYIdW ISOY} SIIPOQUID Inoraeyaq ay1 ae3nsaaur 03 pasojdwd Ap1usrind spoylowr Isoyl SAIPOqUId
LY sisppue oyJ, Sy ur sueldoroe o[qIxsy Y Jo Aupiqels pue wnuqimbs siskjeue oy 1, 3ySry ur suedoroe a[qIxay ay jo Ljiqers pue wnuqimbs
' Y3 Pa s[edp yoiym pajuosaxd si jusuiedny jeondfeue pareidsur uy a3 M S[EIp Yolym pIjussard si jusunesn eonkjeur pajeidojur uy
e
£ uoneindyuo)) suejdoray pareidaruy 1opus|g uoneinsyuo)) suejdoidy paeidnuy 10pusg
_w oys jo Anpiqeig [eurpniiBuoT pue viwlg WY, 3yd jo £pmig y—I] Hed oy jo Aupiquig [eurpmiuor] pue awsg wily, oys jo Apmig y— I e
Ly UONOJAT Jo suoienby sy —] MeJ uonojyl jo suonenbsy oy —1 3reg
54 ‘
WH ANVIIOUAV dTIVINYOIId FHL JO SOINVNAQ INVIIOYIAV JTEVINIOIIA TH.L JO SOIINVNAU XA
)
ﬁhw uopuor] Jo Lnsmvatup) ‘o8s[jo) AtejAl usony) SUpA ‘' ‘¥ uopuor] jo Lysyoatuf) ‘edojjo) L1y ussny) QupAl A "I uw-...n
% 2961 ‘1oquiandag 7961 “1oquidndag ...E
P e v {
e SPEE 'ON "N B " OH'V SHEE ON "IN ¥ M DUV A
X PR
i P
R ol 0L'd e,
b *SpoyIow pa1oLIIsax asays jo uonedydde jo ‘spoylouwr pajoiIIsal 3say Jjo uoneorpdde Jo e
Mn. suorSar oy} AJlIe[d 0] SOAIDS JUSWIILAI) PIIEIZIIUL SY, ], "SIIPNIS D1ISB[I0IoE suo13o1 oY3 AJlIe[d 0) S9AIDS JUSWNEIII PoILISaUL Y ], “SIIPNIS ONISP[0IdE “u.mm.
ﬁw... [euonuoauod woly 1o 9z uo pue sueidorse piSu sy jo Lroayd [cuonudAu0d woiy 190 dyl uo pue aueidorse piSu oy jo Lrooyy A
Wi Lnpiqeis oY) wioly puey suo 5Y) uo Surwwsls suejdorse 9[qIxoy Yyl JO fpqeis a3 woay puey suo syl uo Surwwas surjdoise djqIXay Y Jo A
ﬂJ anowaeysq 93 93e3nsoaul 03 pakodwo L3UsiInd Spoylow ISOYR SAPOGUID Inotaeyaq dy3 93ednsaaul 03 pakojdws APUSLIND SPOIdUI ISOY3 S9IpoquId vq.“w,
..M.. sisfpeue oy 1, 1ySiy ur suejdosse a[qixey Sur Jo LIpqeis pue wniiqijinbs sisAjeue oy, WSy ur suejdoise a[qixoy ay3 jo Lyiqess pue wnuqipnbs x4
w..m a1 yaa s[edp yoryan pajussoxd sI juownedsny [eondeue pajeidaiur uy a1 Yum s[eap yowgam pajussard st jusunear) [eonkeue pajeideur uy .u-.m.-_
<, uoneindyuo)) suejdosay psresddnuy I9puss uoneinSyuo)) suejdoidy psjeidajuy Jopuajg FMJ
.T... oy jo Anjiquig [eurpmiiduo] pue aelg Wi, 9y Jo pmig y—I1 Med oy jo Liiqesg [euipniSuor] pue Rwlg Wi, 9y jo Apmg V—II Med o
w..“ uonoJAT Jo suonenby ay—] 3eg UONOTA] JO suonenby Iy —T 1eJ ,"M.Hm
w. ANVIdOYAV dTdVIAYO0Jdd dHL JO SOINVNAJ INVITIOUIV ITAVINIOJEd JH.L JO SOINVNAJ %
xq- -.‘\W.
uopuor] jo L&ns1vatun) 98s[j0)) AIRAl usan) SUNA " Y uopuor] jo Lusieatun) ‘989[{o) AreAl usonQ) QUL " Y wwwum
2961 “1oquiaidag 2961 “equandag 7>
SHEE ON "N B M DYV SPEEON'IN B "4 DUV P
N
27,
W‘,v.
Ee
K

‘o

v




[

o

AN EY

. -.r

In Part I the equations of motion for a flexible acroplane are developed
in as general a manner as possible.

In Part II the general analysis is applied to a detailed study of the
equilibrium and stability of the slender, integrated acroplane configuration.

In Part I the equations of motion for a flexible aeroplane are developed
in as general a manner as possible.

In Part II the general analysis is applied to a detailed study of the
equilibrium and stability of the slender, integrated aeroplane configuration.

In Part I the equations of motion for a flexible acroplane are developed
in as general a manner as possible.

In Part II the general analysis is applied to a detailed study of the
equilibrium and stability of the slender, integrated acroplane configuration.

In Part I the equations of motion for a flexible aeroplane are developed
in as general a manner as possible.

In Part II the general analysis is applied tc a detailed study of the
equilibrium and stability of the slender, integrated aceroplane configuration.
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Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 47s. 6d. (post 2s. 3d.)

1943 Vol.  I. Aerodynamics, Aerofoils, Airscrews. 8os. (post 2s. 6d.)
Vol. II. Engines, Flutter, Materials, Parachutes, Petformance, Stability and Control, Structures,
9os. (post 2s. 9d.)
1944 Vol. 1. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84s. (post 3s.)

Vol. Il Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance, Plates and
Panels, Stability, Structures, Test E?}nqrfx‘gnt, Wx‘nt.i 'wunnelu. 84s. (post 3s.)
1945 Vol. 1. Aero and Hydrodynamics, Aerofoils. x;’:os. ?post 35, 6d.)
: Vol. II. Aircraft, Airscrews, Controls. 1305, (post 3s. 6d.)
Vol. III. Flutter and Vibration, Instruments, Miscellaneous, Parachutes, Plates and Panels, Propulsion.
130s. (post 3s. 3d.)
Vol. IV. Stability, Structures, Wind Tunnels, Wind Tunnel Technique. 1305, (post 3s. 3d.)

1946 Vol. I. Accidents, Aerodynamics, Aerofoils and Hydrofoils. 168s. (post 3s. od.)

Vol. Il Airscrews, Cabin Cooling, Chemical Hazards, Controls, Flames, Flutter, Helicopters, Instruments and
Instrumentation, Interference, Jets, Miscellaneous, Parachutes. 168s. (post 3s. 3d.)

A Vol. III. Performance, Propulsion, Seaplanes, Stability, Structures, Wind Tunnels. 168s. (post 3s. 6d.)
1947 Vol. 1. Aerodynamics, Aerofoils, Aircraft. 168s. (post 3s. éd.) a
Vol. II. Airscrews and Rotors, Controls, Flutter, Materials, Miscellaneous, Parachutes, Propulsion, Seaplanes,
I Stability, Structures, Take-off and Landing. 168s. (post 3s. 9d.)

. 1948 Vol. 1. Aerodynamics, Aerofoils, Aircraft, Airscrews, Controls, Flutter and Vibration, Helicopters, Instruments,
. Propulsion, Seaplane, Stability, Structures, Wind Tunnels. 130s. (post 3s. 3d.)

i Vol. 1II. Aerodynamics, Aerofoils, Aircraft, Airscrews, Controls, Flutter and Vibration, Helicopters, Instruments,
’ Propulsion, Seaplane, Stability, Structures, Wind Tunnels. 110s. (post 3s. 3d.)

. Special Volumes
R ’ Vol. 1. Aero and Hydrodynamics, Aerofoils, Controls, Flutter, Kites, Parachutes, Performance, Propulsion,
Stability. 126s. (post 3s.)

Vol. 1II. Aeroand Hydrodynamics, Aerofoils, Airscrews, Controls, Flutter, Materials, Miscellaneous, Parachutes,
‘ Propulsion, Stability, Structures. 147s. (post 3s.)

Vol. IIl. Aero and Hydrodynamics, Aerofoils, Airscrews, Controls, Flutter, Kites, Miscellaneous, Parachutes,
Propulsion, Seaplanes, Stability, Structures, T'est Equipment. 18¢s. (post 3s. 9d.)

Reviews of the Aeronautical Research Council
1939-48 3. (post 6d.) 1949-54  5s. (post 5d.)

. Index to all Reports and Memoranda published in the Annual Technical Reports
Oy 1689-1047 R, & M. 2655 {out of print)

Indexes to the Reports and Memoranda of the Aeronautical Research Council

Between Nos. 23512449 . & M. No. 2450 2s. (post 3d.)

Between Nos. 2451-2549 & M. No. 2550 2s. 6d. (post 3d.)
Between Nos, 25512649 & M. No. 2650 2s. 6d. (post 3d.)
Between Nos, 2651-2749 & M. No. 2750 2s5. 6d. (post 3d.)
Between Nos. 2751-2849 . & M. No. 2850 2s. 6d. (post 3d.)
Between Nos. 2851-2949 . & M. No. 2950 3s. (post 3d.)

Between Nos, 2951-3049 . & M. No. 3050 3s. 6d. (post 3d.)
Between Nos, 3051-3149 . & M. No. 3150 3. 6d. (post 3d.)
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